American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2020, 8(1), 34-41
DOI: 10.12691/ajmr-8-1-5
Open AccessArticle

Assessment of Bacterial Diversity of Sandy-Loam Soil Polluted by Hydrocarbons Using 454 Pyrosequencing

Goma-Tchimbakala Joseph1, 2, and Lebonguy Augustin Aimé1

1Laboratoire de Microbiologie appliquée et de Biologie moléculaire, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), BP 2400 Brazzaville, Congo

2Ecole Nationale Supérieure d’Agronomie et de Foresterie, Université Marien NGouabi, BP 69 Brazzaville, Congo

Pub. Date: February 23, 2020

Cite this paper:
Goma-Tchimbakala Joseph and Lebonguy Augustin Aimé. Assessment of Bacterial Diversity of Sandy-Loam Soil Polluted by Hydrocarbons Using 454 Pyrosequencing. American Journal of Microbiological Research. 2020; 8(1):34-41. doi: 10.12691/ajmr-8-1-5


The study was conducted on polluted soil from a refitting oil station at Pointe-Noire in Congo. The aim of the work was to study the composition of the soil microbial community. Microbial diversity was assessed using the 454 pyrosequencing. The results showed that microbial diversity was represented by 1986 OTUs assigned to the Bacteria domain with 97% of similarity. However, only 246 OTUs were affiliated with 12 Phyla, 24 Classes, 56 Orders and 85 Families. The Proteobacteria (73%), Chloroflexi (16.85%), Bacteroidetes (2.68%) and Actinobacteria (2.65%) were the most representative bacterial phyla. The dominant classes were Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Sphingobacteria. The most abundant orders are represented by Rhizobiales (22.94%), Sphingomodales (7.07%), Caulobacterales (6.68%) and three unknown orders corresponding to 28.96%. Bradyrhizobiaceae (14.10%), Sphingomonadaceae (7.05%) and Caulobacteraceae (6.68%) were the best distributed families in the microbial community. This soil could serve for isolation of microorganism consortia for bioremediation.

454 pyrosequencing microbial community diversity soil hydrocarbon

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  P.-W.G. Liu, T.C. Chang, L.-M. Whang, C.-H. Kao, P.-T. Pan, S.-S. Cheng, Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift, International Biodeterioration and Biodegradation 65 (2011) 1119-1127.
[2]  M. Hassanshahian, S. Cappello,. Crude Oil Biodegradation in the Marine Environments, In Biodegradation Rolando Chamy and Francisca Rosenkranz, IntechOpen, biodegradation-engineering-and-technology/crude-oil-biodegradation-in-the-marine- environments (2013)101-135,
[3]  R.M. Atlas, Microbial degradation of petroleum hydrocarbons : an environmental perspective. Microbiological Reviews 45 (1981) 180-208.
[4]  R.S. Peixoto, A.B. Vermelho, A.S. Rosado, Petroleum-Degrading Enzymes : Bioremediation and New Prospects, Enzyme Research, (2011) ID 475193: 1-7
[5]  F.O.P. Stefani, T.H. Bell, C. Marchand, I.E. de la Providencia, A. El Yasssimi, M. St Arnaud,M. Hijri, Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoSONE10 (2015) e0128272.
[6]  V. Torsvik, L. Øvreås, Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5 (2002) 240-245.
[7]  P. Hugenholtz, Exploring prokaryotic diversity in the genomic era. Genome Biology3 (2002) reviews 0003.1-0003.8
[8]  Md. Fakruddin, K.S.B. Mannan, Methods for analyzing diversity of microbial communities in natural environments. Ceylon Journal of Science (Bio. Sci.) 42(2013) 19-33.
[9]  Y. Li, L. Chen, H. Wen, T. Zhou, T. Zhang, X. Gao, 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J. Microbiol. Biotechnol. 24 (2014) 313-323.
[10]  N.B. Sutton, T. Grotenhuis, H.H.M. Rijnaarts, Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere 27 (2013) 67-70.
[11]  C.L. Lauber, M. Hamady, R. Knight, N. Fierer, Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75 (2009) 5111-5120.
[12]  F. Suja, F. Rahim, M. R. Taha, N. Hambali, R. M. Razali, A. Khalid,A.Hamzah,Effects of local microbial bioaugmentation and biostimulation on their remediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration and biodegradation 90 (2014) 115-122.
[13]  M. E. Singer,W.R. Finnerty, Microbial metabolism of straight-chain and branched alkanes. In R. M. Atlas (Ed.), Microbial metabolism of straight-chain and branched alkanes. New York: Macmillan Publishing Company (1984) 1-60.
[14]  D. Mohammed, A. Ramsubhag, D.M. Beckles, An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. Water Air Soil Pollut. 182(2007) 349-356.
[15]  P.W. Kaboré-ouédraogo,P.W. Savadogo, C.A.T.Ouattara, A. Savadogo, Study of the Bio-depollution of contaminated Soils by Hydrocarbons in Burkina Faso. J. Soc. Ouest Afr. Chim. 030 (2010) 19-28.
[16]  J.Murphey,P. Riley, A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. vol. 27 (1962) 31-36.
[17]  L.P. Wang, W.P. Wang, Q.L. Lai,Z.Z.Shao,Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol. 12 (2010) 1230-1242.
[18]  M. Diouf, V. Roy, P. Mora, S. Frechault, T. Lefebvre, V. Hervé, C. Rouland-Lefèvre,E.Miambi Profiling the succession of bacterial communities throughout the life stages of a higher termite Nasutitermesarborum (Termitidae, Nasutitermes) using 16S rRNA gene pyrosequencing. PLosONE, 10(10) (2015)e0140014.
[19]  J. Bray, J. Curtis, An ordination of the upland forest communities in southern Wiscosin.Ecology Monographs27(1957) 325-349
[20]  S. Mukherjee, H. Juattonen, P. Siivonen, C.L. Quesada, P. Tuomi, P. Pulkkinen,K. Yrjälä, Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME Journal 8(2014) 2131-2142.
[21]  P.H. Janssen, Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and16S rRNA genes. Applied and EnvironmentalMicrobiology72 (2006) 1719-1728.
[22]  P.D. Scholss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B.Stres, G.G. Thallinger, D.J. Van Horn, C.F. Weber, Introducing mothur : Open-source, platform-indeperndent community-supported software for describing and comparing microbial communities.App. Environ. Microbiol. 75(2009) 7537-7541.
[23]  R.M.M. Abed, S. Al-Kharusi, S. Prigent, T. Headley, Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland. PLoS ONE9 (2014) e114570.
[24]  S. Yang, X. Wen, H.Jin, Q. Wu, Pyrosequencing Investigation into the Bacterial Community in Permafrost Soils along the China-Russia Crude Oil Pipeline (CRCOP). PLoS ONE, 7 (2012) 1-10. 0052730
[25]  L.FW.Roesch, R.R. Fulthorpe, A. Riva, G. Casella, A.KM. Hadwin, A.D. Kent, S.H. Daroub, F.A.O. Camargo, W.G. Farmerie, E.W. Triplett, Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1(2007) 283-290.
[26]  N. Lenchi, O. Inceoglu, S. Kebbouche-Gana, M.L. Gagna, M. Lliros, P. Servais,T. Garcia-Armesen Diversity of microbial communities in production and injection waters of Algerian oil field revealed by 16S rRNA gene amplicon 454 pyrosequençing, PLosONE 8(2013) e66588.
[27]  M.Peng, X. Zi, Q. Wang, Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.Int. J. Environ. Res. Public Health 12 (2015) 12002-12015.
[28]  Ö. Inceoglu, W.AAl-Soud, J.F. Salles, A.V. Semenov,J.D Van Elsas, Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE, 6(2011) e23321.
[29]  T. Zhang, M.-F Shao, L.Ye, 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. The ISME Journal 6 (2012) 1137-1147.
[30]  L.W Mendes, S.M. Tsai, Variations of bacterial community structure and composition in mangrove sediment at different depths in southeastern Brazil.Diversity 6 (2014) 827-843.
[31]  F.M. Carvalho, R.C. Souza, F.G. Barcellos, M. Hungria, A.T.R. Vasconcelos,Genomic and evolutionary comparisons of diazotrophic and pathogenicbacteria of the order Rhizobiales. BMC Microbiol. 10 (2010) 37.
[32]  R.S. Gupta, A. Mok, Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol. 7(2007) 106.
[33]  D. Pérez-Pantoja, R. Donoso, L. Agullo, M. Cordova, M. Seeger, D.H. Pieper, B.Gonzalez,Genomic analysis of the potential for aromaticcompounds biodegradation in Burkholderiales. Environ. Microbiol. 14(2012) 1091-1117.
[34]  T.H. Bell, E. Yergeau, C. Martineau, D. Juck, L.G. Whyte,C.W. Greer, Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing. Applied and Environmental Microbiology, 77(2011) 4163-4171.
[35]  J.E. Kostka, O. Prakash, W.A. Overholt, S.J. Green, G. Freyer, A. Canion, J. Delgardio, N. Norton, T.C. Hazen, M. Huettel, Hydrocarbon-degrading bacteria and the bacterial community response in Gulf ofMexico beach sands impacted by the deepwater horizon oil spill.Applied and Environmental Microbiology (2011) 7962-7974.
[36]  H. Nacke, A. Thümer, A. Wollherr, C. Will, L. Hodac, N. Herold, I. Schöning, M. Schrumpf,R. Daniel, Pyrosequençing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PloS ONE 6(2011) e17000