American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2019, 7(1), 28-36
DOI: 10.12691/ajmr-7-1-5
Open AccessArticle

Bio-Control of Net-Blotch and Scald Pathogens of Barley Using Paenibacillus Polymyxa KAI245 Isolated from Sorghum Rhizosphere in Western Kenya

Kipkogei Chemitei1, , Makumba B. Amendi2, Lizzy A. Mwamburi1 and Julius Onyango Ochuodho3

1Department of Biological Sciences, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya

2Department of Biological Sciences, Moi University, P.O Box 4606-30100, Eldoret, Kenya

3Department of Seed Science Technology, University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya

Pub. Date: February 19, 2019

Cite this paper:
Kipkogei Chemitei, Makumba B. Amendi, Lizzy A. Mwamburi and Julius Onyango Ochuodho. Bio-Control of Net-Blotch and Scald Pathogens of Barley Using Paenibacillus Polymyxa KAI245 Isolated from Sorghum Rhizosphere in Western Kenya. American Journal of Microbiological Research. 2019; 7(1):28-36. doi: 10.12691/ajmr-7-1-5

Abstract

Net-blotch and scald are important foliar diseases of barley. In the present study, the biocontrol activity of Paenibacillus polymyxa KaI245 was evaluated against Drechsclera teres f. sp teres and Rhynchosporium commune causing net-form-net-blotch and scald respectively. In-vitro efficacy of the bacterial isolate entailed dual culture technique, use of cell-free supernatant and test for volatile-compounds-mediated inhibition. Greenhouse studies were further conducted to evaluate the efficacy of crude bacterial extracts against net-blotch pathogen in barley plants. In dual culture technique, the mycelial growth of D. teres f. sp teres was impeded by approximately 47.3% while there was no any observable effect in R. commune colonies. Food-poison technique was u sed to test the antifungal activity of cell-free supernatant. The cell free supernatant inhibited the growth of D. teres by approximately 24.1%. R. commune colonies were impeded by 52.9% via volatile organic compounds while D. teres f. sp teres remained unaffected. Greenhouse studies showed decreased disease incidence (50%) in the crude-extract-treated barley leaves inoculated with D. teres. In-vitro studies revealed that greater inhibition is imparted by live bacterial cells. The bacterium has the potential to be used as a biocontrol agent against the tested pathogens of barley. Use of bio-control agents to manage crop diseases is one of the alternatives set to replace chemical fungicides that are saddled with lots of negativity due to their hazardous environmental impact.

Keywords:
D. teres f. sp teres R. commune P. polymyxa KaI245 net-form-net-blotch scald bio-control

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Jenkins, G. (1985). Barley. Outlook on Agriculture, 14(2), 61-67.
 
[2]  McLean, M. S., Howlett, B. J., & Hollaway, G. J. (2009). Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop and Pasture Science, 60(4), 303-315.
 
[3]  Liu, Z., Ellwood, S. R., Oliver, R. P., & Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging barley pathogen. Molecular Plant Pathology, 12(1), 1-19.
 
[4]  Lightfoot, D. J., & Able, A. J. (2010). Growth of Pyrenophora teres in planta during barley net blotch disease. Australasian Plant Pathology, 39(6), 499-507.
 
[5]  Smedegård-Petersen, V. (1971). Pyrenophora teres f. maculata f. nov. and Pyrenophora teres f. teres on barley in Denmark. In Kgl Vet Landbohojsk Arsskr.
 
[6]  Sarpeleh, A., Wallwork, H., Catcheside, D. E., Tate, M. E., & Able, A. J. (2007). Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch. Phytopathology, 97.
 
[7]  Steffenson, B., Hayes, P., & Kleinhofs, A. (1996). Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. TAG Theoretical and Applied Genetics, 92(5), 552-558.
 
[8]  Mathre, D. E. (1997). Compendium of Barley Diseases. American Phytopathological Society: St Paul MN.
 
[9]  Murray, G. M., & Brennan, J. P. (2010). Estimating disease losses to the Australian barley industry. Aust Plant Pathol, 39.
 
[10]  Arzanlou, M., Bakhshi, M., Karimi, K., & Torbati, M. (2015). Multigene phylogeny reveals three new records of Colletotrichum spp. and several new host records for the mycobiota of Iran. Journal of Plant Protection Research, 55(2), 198-211.
 
[11]  Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57(1), 1-14.
 
[12]  OLIVER, R. P., & IPCHO, S. V. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs. -biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5(4), 347-352.
 
[13]  Stefansson, T. S., Willi, Y., Croll, D., & McDonald, B. A. (2014). An assay for quantitative virulence in Rhynchosporium commune reveals an association between effector genotype and virulence. Plant Pathology, 63(2), 405-414.
 
[14]  Owino, A., Ochuodho, J., Were, J., & Rop, N. (2014). Response of spring and winter Barley to Pyrenophora teres under high and medium altitude zones of Kenya. International Journal of Research in Agriculture and Food Sciences, 2(2), 1-10.
 
[15]  Owino, A., Ochuodho, J., & Were, J. (2013). Morphological diversity of Net Blotch Fungi (Pyrenophora teres) infecting barley (H. vulgare) in barley growing areas of Kenya. Journal of Experimental Biology and Agricultural Sciences., 1.
 
[16]  Cieślik, E., Sadowska-Rociek, A., Surma, M., & Topolska, K. (2014). Quality and safety of food. AGROECOLOGY, 131.
 
[17]  Lusenaka, E. (2017, February 16). Tax policies killing Kenya’s agro-industry. THE Standard, p. 15.
 
[18]  Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal of Microbiology, 49(1), 2-10.
 
[19]  Lal, S., Romano, S., Chiarini, L., Signorini, A., & Tabacchioni, S. (2012). The Paenibacillus polymyxa species is abundant among hydrogen-producing facultative anaerobic bacteria in Lake Averno sediment. Archives of Microbiology, 194(5), 345-351.
 
[20]  Huang, E., & Yousef, A. E. (2012). Draft genome sequence of Paenibacillus polymyxa OSY-DF, which coproduces a lantibiotic, paenibacillin, and polymyxin E1. Journal of Bacteriology, 194(17), 4739-4740.
 
[21]  Caruso, F., Zuck, M., & Bessette, A. (1984). Bacterial seedling blight of tomato caused by Bacillus polymyxa [Isolation and identification]. Plant Diseases (USA).
 
[22]  Makumba, B., Mwamburi, L., & Kiprop, E. (2016). Management of sorghum anthracnose using bio-control agents produced by sorghum rhizobacteria in western Kenya. University of Eldoret.
 
[23]  Abang, M. M., Baum, M., Ceccarelli, S., Grando, S., Linde, C. C., Yahyaoui, A., … McDonald, B. A. (2006). Differential selection on Rhynchosporium secalis during parasitic and saprophytic phases in the barley scald disease cycle. Phytopathology, 96(11), 1214-1222.
 
[24]  Darna, R., Purnamasari, M., Agustina, D., Pramudito, T., Sugiharti, M., & Suwanto, A. (2016). A strong Anti-fungal producing bacteria from Bamboo powder for Bio-control of Sclerotium rolsfii in Melon Cucumis melo var. amanta. Journal of Plant Pathology and Microbiology., 7(2).
 
[25]  Wang, N. N., Yan, X., Gao, X. N., Niu, H. J., Kang, Z. S., & Huang, L. L. (2016). Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali. World Journal of Microbiology and Biotechnology, 32(4).
 
[26]  Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964.
 
[27]  Hyvonen, T. (2011). Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agriculltural and Food Science, 20, 183-190.
 
[28]  Guarro, J., Pujol, I., Aguilar, C., Llop, C., & Fernández-Ballart, J. (1998). Inoculum preparation for in-vitro susceptibility testing of filamentous fungi. Journal of Antimicrobial Chemotherapy, 42(3), 385-387.
 
[29]  Morris, S., & Nicholls, J. (1978). An evaluation of optical density to estimate fungal spore concentrations in water suspensions. Strain, 1, 1240-1242.
 
[30]  Jorgensen, H., Andresen, H., & Smedegaard-Petersen, V. (1996). Control of Drechslera teres and other barley pathogens by preinoculation with Bipolaris maydis and Septoria nodorum. Phytopathology, 86(6), 602-607.
 
[31]  Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1), 113-121.
 
[32]  Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W., & Park, K. (2013). An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica, 41(1), 49-58.
 
[33]  Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H., & Pée, K. van. (2000). Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Management Science, 56(8), 688–695.
 
[34]  Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4(2), 127-136.
 
[35]  Combès, A., Ndoye, I., Bance, C., Bruzaud, J., Djediat, C., Dupont, J., … Prado, S. (2012). Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One, 7(10), e47313.
 
[36]  Marmann, A., Aly, A. H., Lin, W., Wang, B., & Proksch, P. (2014). Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms. Marine Drugs, 12(2), 1043-1065.
 
[37]  Hunziker, L., Bönisch, D., Groenhagen, U., Bailly, A., Schulz, S., & Weisskopf, L. (2015). Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora infestans. Applied and Environmental Microbiology, 81(3), 821-830.
 
[38]  Vinodkumar, S., Nakkeeran, S., Renukadevi, P., & Malathi, V. G. (2017). Biocontrol Potentials of Antimicrobial Peptide Producing Bacillus Species: Multifaceted Antagonists for the Management of Stem Rot of Carnation Caused by Sclerotinia sclerotiorum. Frontiers in Microbiology, 8, 446.