American Journal of Modeling and Optimization
ISSN (Print): 2333-1143 ISSN (Online): 2333-1267 Website: Editor-in-chief: Dr Anil Kumar Gupta
Open Access
Journal Browser
American Journal of Modeling and Optimization. 2017, 5(1), 24-57
DOI: 10.12691/ajmo-5-1-3
Open AccessReview Article

It Is Important to Compute Intramolecular Hydrogen Bonding in Drug Design?

María J. R. Yunta1,

1Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, Madrid, Spain

Pub. Date: October 30, 2017

Cite this paper:
María J. R. Yunta. It Is Important to Compute Intramolecular Hydrogen Bonding in Drug Design?. American Journal of Modeling and Optimization. 2017; 5(1):24-57. doi: 10.12691/ajmo-5-1-3


The effect of weak intermolecular interactions on the binding affinity between ligand-protein complexes plays an important role in stabilizing a ligand at the interface of a protein structure. In this review article, we will explore the different ways of taking into account these interactions, mainly intramolecular hydrogen bonds, in docking calculations. Their possible limitations and their suitable application domains are highlighted. Inspection of the outliers of this study probed very stimulating, as it provides opportunities and inspiration to medicinal chemists, being a reminder of the impact that minimal chemical modifications can have on biological activities.

molecular modeling weak intermolecular interactions intramolecular hydrogen bonding binding affinity computer aided drug design

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 18


[1]  Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U. S. A., 37(4), 205-211, April 1951.
[2]  Mulliken, R. S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents 1. J. Am. Chem. Soc., 72(1), 600-608, January 1950.
[3]  Politzer, P.; Lane, P.; Concha, M.; Ma, Y.; Murray, J. An overview of halogen bonding. J. Mol. Model., 13(2), 305-311, February 2007.
[4]  Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen Bonding in Supramolecular Chemistry. Angew. Chem. Int. Ed., 47(33), 6114-6127, August 2008.
[5]  Sánchez-Sanz, G.; Alkorta, I.; Trujillo, C.; Elguero, J. Intramolecular Pnicogen Interactions in PHF(CH2)nPHF (n =2-6) Systems. ChemPhysChem, 14(8), 1656-1665, March 2013.
[6]  Sanchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Modulating intramolecular P-N pnictogen interactions. Phys. Chem. Chem. Phys., 18(13), 9148-9160, April 2016.
[7]  Alkorta, I.; Rozas, I.; Elguero, J. Molecular Complexes between Silicon Derivatives and Electron-Rich Groups. J. Phys. Chem. A, 105(4), 743-749, January 2001.
[8]  Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-Bonding Interaction: Rediscovered Supramolecular Force? Angew. Chem. Int. Ed., 52(47), 12317-12321, November 2013.
[9]  Pauling, L. The Nature of the Chemical Bond; Cornell Univ. Press: Ithaca, NY, 1939.
[10]  Martin, T. W.; Derewenda, Z. W. The name is bond - H-bond. Nat. Struct. Biol., 6(5), 403-406, May 1999.
[11]  Huggins, M. L. 50 Years of Hydrogen Bond Thoery. Angew. Chem., Int. Ed. Engl., 10(3), 147-208, March 1971.
[12]  Gao, J., Bosco, D. A., Powers, E. T., Kelly, J. W. Localized thermodynamic coupling between hydrogen bonding and microenvironment polarity substantially stabilizes proteins. Nat. Struct. Mol. Biol. 16(7), 684-690, July 2009.
[13]  S. Salentin, V. J. Haupt, S. Daminelli, M. Schroeder, Polypharmacology rescored: Protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol. 116(2-3), 174-186, June 2014.
[14]  Natarajan, A., Schwans, J. P., Herschlag, D. Using unnatural amino acids to probe the energetics of oxyanion hole hydrogen bonds in the ketosteroid isomerase active site. J. Am. Chem. Soc. 136(21), 7643-7654, May 2014.
[15]  Taylor, M. S., Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. Engl. 45(10), 1520-1543, February 2006.
[16]  Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin, 1994.
[17]  Desiraju, G. R., Steiner, T. The Weak Hydrogen Bond, Oxford University Press, Oxford, UK, 1999.
[18]  Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond − Outline of a Comprehensive Hydrogen Bond Theory; Oxford University Press: New York, 2009.
[19]  Chodera, J. D., Mobley, D. L. Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 42(1), 121-142, January 2013.
[20]  Olsson, T. S. G., Ladbury, J. E., Pitt, W. R., Williams, M. A. Extent of enthalpy-entropy compensation in protein-ligand interactions. Protein Sci. 20(9), 1607-1618, August 2011
[21]  Leigh, D. A. Summing up ligand binding interactions. Chem. Biol. 10(12), 1143-1144, December 2003.
[22]  Li, Y., Han, L., Liu, Z., Wang, R. Comparative assessment of scoring functions on an updated benchmark: II. Evaluationmethods and general results. J. Chem. Inf. Model. 54(6), 1717-1736, June 2014.
[23]  Wang, R., Lai, L., Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16(1), 11-26, January 2002.
[24]  Hunter, C. A., Angew. Chem. Int. Ed., 43(40), 5310-5324, October 2004.
[25]  Abraham, M. H.; Duce, P. D.; Prior, D. V.; Barratt, D. G.; Morris, J. J.; Taylor, P. J. Hydrogen bonding. Part 9. Solute proton-donor and proton-acceptor scales for use in drug design. J. Chem. Soc., Perkin Trans. 2, 1989(10), 1355-1375, October 1989.
[26]  Bingham, A. H.; Davenport, R. J.; Gowers, L.; Knight, R. L.; Lowe, C.; Owen, D. A.; Parry, D. M.; Pitt, W. R. Bioorg. Med. Chem. Lett., 14(5), 409-412, May 2004.
[27]  Sawada, T., Fedorov, D. G., Kitaura, K. Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations. J. Am. Chem. Soc. 132(47), 16862-16872, November 2010.
[28]  V. Lafont, A. A. Armstrong, H. Ohtaka, Y. Kiso, L. M. Amzel, E. Freire, Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem. Biol. Drug Des. 69(6), 413-422, June 2007.
[29]  Ross, G. A., Morris, G. M., Biggin, P. C. Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLOS One 7, e32036 (2012).
[30]  Sarkar, A., Kellogg, G. E. Hydrophobicity-shake flasks, protein folding and drug discovery. Curr. Top. Med. Chem. 10(1), 67-83, January 2010.
[31]  Abel, R., Young, T., Farid, R., Berne, B. J., Friesner, R. A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130(9), 2817-2831, February 2008.
[32]  C. Barillari, J. Taylor, R. Viner, J. W. Essex, Classification of water molecules in protein binding sites. J. Am. Chem. Soc. 129(9), 2577-2587, February 2007.
[33]  S. D. Fried, S. Bagchi, S. G. Boxer, Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science, 346(6216), 1510-1514, December 2014.
[34]  S. C. L. Kamerlin, P. K. Sharma, Z. T. Chu, A. Warshel, Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization. Proc. Natl. Acad. Sci. U.S.A. 107(9), 4075-4080, March 2010.
[35]  Ruben, E. A., Schwans, J. P., Sonnett, M., Natarajan, A., Gonzalez, A., Tsai, Y., Herschlag, D. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site. Biochemistry 52(6), 1074-1081, February 2013.
[36]  Chen, D. A., Savidge, T. Comment on “Extreme electric fields power catalysis in the active site of ketosteroid isomerase”. Science, 349(6251), 936, August 2015.
[37]  Mullard, A. New drugs cost US$2.6 billion to develop. Nat. Rev. Drug Discov. 13(12), 877, December 2014.
[38]  Umeyama, H.; Morokuma, K. J. Am. Chem. Soc., 99(5), 1316-1332, March 1977.
[39]  Morokuma, K.; Kitaura, K. In Chemical applications of atomic and molecular electrostatic potentials; Politzer, P., Truhlar, D. G., Eds.; Plenum: New York, 1981, 215-242.
[40]  Jeffrey, G. A.; Maluszynska, H. Int. J. Biol. Macromol., 4(3), 173-185, April 1982.
[41]  Taylor, R.; Kennard, O.; Versichel, W. J. Am. Chem. Soc., 105(18), 5761-5766, September 1983.
[42]  Kubinyi, H. Hydrogen Bonding: The Last Mystery in Drug Design? In Pharmacokinetic optimization in drug research: biological, physicochemical, and computational strategies, 1st ed; Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R. Helvetica Chimica Acta: Zürich, Switzerland, 2001; pp 513-524.
[43]  Ladbury, J. E. Isothermal titration calorimetry: application to structure based drug design. Thermochim. Acta, 380(2), 209-215, December 2001.
[44]  Freire, E. Do enthalpy and entropy distinguish first in class from best in class. Drug Discovery Today, 13(19-20), 869-874, October 2008.
[45]  Velazquez-Campoy, A.; Freire, E. Incorporating Target Heterogeneity in Drug Design. J. Cell. Biochem., 84(S37), 82-88, December 2001.
[46]  Reynisson, J.; McDonald, E. Tuning of hydrogen bond strength using substituents on phenol and aniline: A possible ligand design strategy. Journal of Comput.-Aided Mol. Des., 18(6), 421-431, June 2004.
[47]  Homans, S. W. Water, water everywhere where it matters. Drug Discovery Today, 12(13-14), 534-539, July 2007.
[48]  Teague, S. J. Implications of Protein Flexibility for Drug Discovery. Nature ReViews, 2(7), 527-541, July 2003.
[49]  Davis, A. M.; Teague, S. J. Hydrogen Bonding, Hydrophobic Interactions, and Failure of the Rigid Receptor Hypothesis. Angew. Chem., Int. Ed. Engl., 38(6), 736-749, March 1999.
[50]  Böhm, H.-J.; Klebe, G. What Can We Learn from Molecular Recognition in Protein- Ligand Complexes for the Design of New Drugs. Angew. Chem., Int. Ed. Engl., 35(22), 2588-2614, December 1996.
[51]  Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. Effects of Substituting Group on the Hydrogen Bonding in Phenol-H2O Complexes: Ab Initio Study. J. Phys. Chem. A, 107(1), 131-139, January 2003.
[52]  Bryantsev, V. S.; Hay, B. P. Influence of Substituents on the Strength of Aryl C-H.-Anion Hydrogen Bonds. Org. Lett., 7(22), 5031-5034, September 2005.
[53]  Sovago, I.; Gutmann, M.J.; Hill, J.G.; Senn, H.M.; Thomas, L.H.;Wilson, C.C.; Farrugia, L.J. Experimental Electron Density and Neutron Diffraction Studies on the Polymorphs of Sulfathiazole. Cryst. Growth Des., 14(3), 1227-1239, March 2014.
[54]  Thomas, S. P.; Jayatilaka, D.; Guru Row, T. N. S···O chalcogen bonding in sulfa drugs: insights from multipole charge density and X-ray wavefunction of acetazolamide. Phys. Chem. Chem. Phys., 17(38), 25411-25420, October 2015.
[55]  Thomas, S. P.; Veccham, S. P. K. P.; Farrugia, L. J.; Guru Row, T. N. “Conformational Simulation” of Sulfamethizole by Molecular Complexation and Insights from Charge Density Analysis: Role of Intramolecular S···O Chalcogen Bonding. Cryst. Growth Des., 15(5), 2110-2118, April 2015.
[56]  Kilian, P.; Knight, F. R.; Woollins, J. D. Naphthalene and Related Systems peri-Substituted by Group 15 and 16 Elements. Chem. Eur. J., 17(8), 2302-2328, February 2011.
[57]  Brea, O.; Corral, I.; Mó, O.; Yáñez, M.; Alkorta, I.; Elguero, J. Beryllium-Based Anion Sponges: Close Relatives of Proton Sponges. Chem. Eur. J., 22(51), 18322-18325, November 2016.
[58]  Cormanich, R. A.; Rittner, R.; O’Hagan, D.; Bühl, M. Analysis of CF···FC Interactions on Cyclohexane and Naphthalene Frameworks. J. Phys. Chem. A, 118(36), 7901-7910, August 2014.
[59]  Llamas-Saiz, A. L.; Foces-Foces, C.; Elguero, J. Proton sponges. J. Mol. Struct., 328, 297-323, December 1994.
[60]  Matta, C. F.; Castillo, N.; Boyd, R. J. Characterization of a Closed-Shell Fluorine-Fluorine Bonding Interaction in Aromatic Compounds on the Basis of the Electron Density. J. Phys. Chem. A, 109(16), 3669-3681, April 2005.
[61]  Caron, G.; Ermondi, G. Why we need to implement intramolecular hydrogen-bonding considerations in drug discovery. Future Medicinal Chemistry, 9(1), 1-5, January 2017.
[62]  Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem., 83(8), 1619-1636, July 2011.
[63]  Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
[64]  Nagy, P.I.; Dunn, W.J., III; Nicholas, J.B. Investigations on the convergence rate of the thermodynamic parameters from Monte Carlo simulations of aqueous solutions of methanol and methylamine. J. Chem. Phys., 91(6), 3707-3715, June 1989.
[65]  Jeffrey, G. A., Saenger, W. Hydrogen Bonding in Biological Structures, Springer-Verlag Berlin, 1994.
[66]  Gregory R. B. Ed., Protein-solvent interactions, Marcel Dekker, New-York, 1995.
[67]  Kuhn, B., Mohr, P, Stahl, M. Intramolecular Hydrogen Bonding in Medicinal Chemistry. J. Med. Chem., 53(6), 2601-2611, February 2010.
[68]  Degrève, L., Blum, L. Analytic potential for water: a Monte Carlo study. Physica A, 224(3-4), 550-557, February 1996.
[69]  Buckingham, A. D. Theoretical Treatments of Hydrogen Bonding, Wiley, New York, NY, 1997.
[70]  Scheiner, S. Hydrogen Bonding. A Theoretical PerspectiVe, Oxford University Press, New York, 1997.
[71]  Millot, C. and Stone, A. J. Towards an accurate intermolecular potential for water. Mol. Phys., 77(3), 439-462, August 1992.
[72]  Joesten, M.D. and Schaad, L. J. Hydrogen Bonding, Marcel Dekker, New York, NY, 1974.
[73]  Hansch, C. Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res., 2(8), 232-239, August 1969.
[74]  Gurka, D., Taft, R. W., Studies of hydrogen-bonded complex formation with p-fluorophenol. IV. Fluorine nuclear magnetic resonance method. J. Am. Chem. Soc., 91(17), 4794-4801, August 1969.
[75]  Joris, L., Mitsky, J. and Taft, R. W., Effects of polar aprotic solvents on linear free-energy relations in hydrogen-bonded complex formation. J. Am. Chem. Soc., 94(10), 3438-3442, May 1972.
[76]  Taft, R. W.; Gurka, D.; Joris, L.; Schleyer, P. V. R.; Rakshys, J. W. Studies of hydrogen-bonded complex formation with p-fluorophenol. V. Linear free energy relationships with OH reference acids. J. Am. Chem. Soc., 91(17), 4801-4808, August 1969.
[77]  Huyskens, P. L., Luck, W. A. P., Zeegers-Huyskens, T. Intermolecular Forces, Springer, Berlin, 1991.
[78]  Abraham, M. H., Grellier, P. L., Prior, D. V., Duce, P. P., Morris, J. J., Taylor, P. J. Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log K values for complexation in tetrachloromethane. J. Chem. Soc., Perkin Trans. 2, 1989(6), 699-711, June 1989.
[79]  Raczynska, E .D., Laurence, C., Nicolet, P. Hydrogen bonding basicity of amidines. J. Chem. Soc., Perkin Trans. 2, 1988(8) 1491-1494, August 1988.
[80]  Laurence, C., Berthelot, M., Helbert, M., Sraïdi, K. The first measurement of the hydrogen bond basicity of monomeric water, phenols and weakly basic alcohols. J. Phys. Chem., 93(9), 3799-3802, May 1989.
[81]  Raczynska, E. D., Laurence, C. Hydrogen-bonding basicity of acetamidines and benzamidines. J. Chem. Res. (S), 1989(4), 148-149, April 1989.
[82]  Laurence, C., Berthelot, M., Raczynska, E., Le Questel, J.-Y., Duguay, G., Hudhomme, P. Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. J. Chem. Res. (S), 1990(7), 250, July 1990.
[83]  Raczynska, E. D., Laurence, C., Berthelot, M. Basicité de liaison hydrogène de formamidines substituées sur l'azote imino. Can. J. Chem., 70(8), 2203-2208, August 1992.
[84]  Le Questel, J.-Y., Laurence, C., Lachkar, A., Helbert, M., Berthelot, M. Hydrogen-bond basicity of secondary and tertiary amides, carbamates, ureas and lactams. J. Chem. Soc., Perkin Trans. 2, 1992(12), 2091-2094, December 1992.
[85]  Berthelot, M., Helbert, M., Laurence, C., Le Questel, J.-Y., Hydrogen-bond basicity of nitriles. J. Phys. Org. Chem., 6(5), 302-306, May 1993.
[86]  Berthelot, M., Helbert, M., Laurence, C., Le Questel, J.-Y., Anvia, F., Taft, R. W., Super-basic nitriles. J. Chem. Soc., Perkin Trans. 2, 1993(4), 625-627, April 1993.
[87]  Raczynska, E. D., Laurence, C., Berthelot, M. Application of infrared spectrometry to the study of tautomeric equilibria and hydrogen bonding basicity of medical and biochemical agents: N,N-disubstituted amidines. Analyst, 119(4), 683-687, February 1994.
[88]  Chardin, A., Berthelot, M., Laurence, C., Morris, D.G. Carbonyl oxygen as a hydrogen-bond super-base: The amidates. J. Phys. Org. Chem., 7(12), 705-711, December 1994.
[89]  Laurence, C., Berthelot, M., Luçon, M., Morris, D. G., Hydrogen-bond basicity of nitro-compounds. J. Chem. Soc., Perkin Trans. 2, 1994(3), 491-493, March 1994.
[90]  Besseau, F., Laurence, C., Berthelot, M. Hydrogen-bond basicity of esters, lactones and carbonates. J. Chem. Soc., Perkin Trans. 2, 1994(3), 485-489, March 1994.
[91]  Chardin, A., Berthelot, M., Laurence, C., Morris, D. G. Tributylammonium cyanamidate BU3N+-N-C≡N: A ‘super-basic’ nitrile group more basic, on the hydrogen-bond basicity scale, than any amine or pyridine. J. Phys. Org. Chem., 8(9), 626-628, September 1995.
[92]  Laurence, C., Berthelot, M., Le Questel, J.-Y., El Ghomari, M. J. Hydrogen-bond basicity of thioamides and thioureas. J. Chem. Soc., Perkin Trans. 2, 1995(11), 2075-2079, November 1995.
[93]  Chardin, A., Laurence, C., Berthelot, M., Morris, D.G. L'échelle pKHB de la diméthylnitramine, des vinylogues de nitramine et des nitramidates. Bull. Soc. Chim. Fr., 133(4), 389-393, April 1996.
[94]  Besseau, F., Laurence, C., Berthelot, M. The pK(HB) scale of pi bases. Bull. Soc. Chim. Fr., 133(4), 381-387, April 1996.
[95]  Berthelot, M., Laurence, C., Foucher, D., Taft, R. W. Partition coefficients and intramolecular hydrogen bonding. 1. The hydrogen-bond basicity of intramolecular hydrogen-bonded heteroatoms. J. Phys. Org. Chem., 9(5), 255-261, May 1996.
[96]  Chardin, A., Laurence, C., Berthelot, M., L'échelle pKHB de la diméthylnitramine, des vinylogues de nitramine et des nitramidates. J. Chem. Res. (S), 1996(7), 332-333, September 1996.
[97]  Chardin, A., Laurence, C., Berthelot, M., Morris, D. G. Hydrogen-bond basicity of the sulfonyl group. The case of strongly basic sulfonamidates RSO2NNMe3. J. Chem. Soc., Perkin Trans. 2, 1996(6), 1047-1051, June 1996.
[98]  Besseau, F., Luçon, M., Laurence, C., Berthelot, M. Hydrogen-bond basicity pKHB scale of aldehydes and ketones. J. Chem. Soc., Perkin Trans. 2, 1998(1) 101-108, January 1998.
[99]  Berthelot, M., Laurence, C., Safar, M., Besseau, F. Hydrogen-bond basicity pKHB scale of six-membered aromatic N-heterocycles. J. Chem. Soc., Perkin Trans. 2, 1998(2), 283-290, February 1998.
[100]  Berthelot, M., Besseau, F., Laurence, C. The Hydrogen-Bond Basicity pKHB Scale of Peroxides and Ethers. Eur. J. Org. Chem., 1998(5), 925-931, May 1998.
[101]  Graton, J., Laurence, C., Berthelot, M., Le Questel, J.-Y., Besseau, F., Raczynska, E.D. Hydrogen-bond basicity pKHB scale of aliphatic primary amines. J. Chem. Soc., Perkin Trans. 2, 1999(10), 997-1002, October 1999.
[102]  Le Questel, J.-Y., Berthelot, M., Laurence, C. Can semi-empirical calculations yield reasonable estimates of hydrogen-bonding basicity? The case of nitriles. J. Chem. Soc., Perkin Trans. 2, 1997(12), 2711-2718, December 1997.
[103]  Nagy, P. I. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution. Int. J. Mol. Sci., 15(11), 19562-19633, October 2014.
[104]  Nagy, P. I. Are the Intramolecular O−H···F and O−H···Cl Hydrogen Bonds Maintained in Solution? A Theoretical Study. J. Phys. Chem. A, 117(13), 2812-2826, March 2013.
[105]  Nagy, P. I. Theoretical studies of the solvent effect on the conformation of the HO-C-C-X (X = F, NH2, NO2) moiety with competing intra- and intermolecular hydrogen bonds. J. Phys. Chem. A, 116(29), 7726-7741, June 2012.
[106]  Wiberg, K. B., Clifford, S., Jorgensen, W. L., Frisch, M. J. Origin of the inversion of the acidity order for haloacetic acids on going from the gas phase to solution. J. Phys. Chem. A, 114(32), 7625-7628, July 2000.
[107]  Nagy, P. I., Alagona, G., Ghio, C. Theoretical investigation of tautomeric equilibria for isonicotinic acid, 4-pyridone, and acetylacetone in vacuo and in solution. J. Chem. Theory Comput., 3(4), 1249-1266, May 2007.
[108]  Carney, J. R., Dian, B. C., Florio, G. M., Zwier, T. S. The role of water bridges in directing the conformational preferences of 3-indole-propionic acid and tryptamine. J. Am. Chem. Soc., 123(23), 5596-5597, May 2001.
[109]  Borho, N., Suhm, M. A., Le Barbu-Debus, K., Zehnacker, A. Intra- vs. intermolecular hydrogen bonding: Dimers of α-hydroxyesters with methanol. Phys. Chem. Chem. Phys., 8(38), 4449-4460, August 2006.
[110]  Le Barbu-Debus, K., Guchhait, N., Zehnacker-Rentien, A. Electronic and infrared spectroscopy of jet-cooled (±)-cis-1-amino-indan-2-ol hydrates. Phys. Chem. Chem. Phys., 9(32), 4465-4471, June 2007.
[111]  Senent, M. L., Niño, A., Muñoz-Caro, C., Smeyers, Y. G., Domínguez-Gómez, R., Orza, J. M. Theoretical study of the effect of hydrogen-bonding on the stability and vibrational spectrum of isolated 2,2,2-trifluoroethanol and its molecular complexes. J. Phys. Chem. A, 106(44), 10673-10680, October 2002.
[112]  Zwier, T. S. Laser spectroscopy of jet-cooled biomolecules and their water-containing clusters: Water bridges and molecular conformation. J. Phys. Chem. A, 105(39), 8827-8839, August 2001.
[113]  Snoek, L. C., van Mourik, T., ÇarÇabal, P., Simons, J. P. Neurotransmitters in the gas phase: Hydrated noradrenaline. Phys. Chem. Chem. Phys., 5(20), 4518-4526, September 2003.
[114]  Van Mourik, T. The shape of neurotransmitters in the gas phase: A theoretical study of adrenaline, pseudoadrenaline, and hydrated adrenaline. Phys. Chem. Chem. Phys., 6(10), 2827-2837, April 2004.
[115]  LeGreve, T. A., James, W. J. III, Zwier, T. S. Solvent effects on the conformational preferences of serotonin: Serotonin-(H2O)n, n = 1, 2. J. Phys. Chem. A, 113(2), 399-410, December 2009.
[116]  Fricke, H., Schwing, K., Gerlach, A., Unterberg, C., Gerhards, M. Investigations of the water clusters of the protected amino acid Ac-Phe-OMe by applying IR/UV double resonance spectroscopy: Microsolvation of the backbone. Phys. Chem. Chem. Phys., 12(14), 3511-3521, March 2010.
[117]  Rodríguez-Sanz, A. A., Cabaleiro-Lago, E. M., Rodríguez-Otero, J. Cation…π interaction and microhydration effects in complexes formed by pyrrolidinium cation and aromatic species in amino acid side chains. Org. Biomol. Chem., 12(18), 2938-2949, February 2014.
[118]  Gerhards, M., Kleinermanns, K. Structure and vibrations of phenol (H2O)2. J. Chem. Phys. 103(17), 7392, July 1995.
[119]  Shukla, M. K., Leszczynski, J. Interaction of water molecules with cytosine tautomers: An excited-state quantum chemical investigation. J. Phys. Chem. A, 106(46), 11338-11346, October 2002.
[120]  Rejnek, J., Hanus, M., Kabeláč, M., Ryjáček, F., Hobza, P. Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Part 4. Uracil and thymine. Phys. Chem. Chem. Phys., 7(9), 2006-2017, April 2005.
[121]  Rudić, S., Xie, H. B., Gerber, R. B., Simons, J. P. Protonated sugars: Vibrational spectroscopy and conformational structure of protonated O-methyl α-D-galactopyranoside. Mol. Phys., 110(15-16), 1609-1615, February 2012.
[122]  Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed., 47(1), 48-76, January 2002.
[123]  Gilli, G., Gilli, P. Towards an unified hydrogen-bond theory. J. Mol. Struct., 552(1-3), 1-15, September 2000.
[124]  Desiraju, G. R. A Bond by Any Other Name. Angew. Chem. Int. Ed., 50(1), 52-59, January 2011.
[125]  Sobczyk, L., Grabowski, S. J., Krygowski, T. M. Interrelation between H-bond and Pi-electron delocalization. Chem. Rev., 105(10), 3513-3560, September 2011.
[126]  Parra, R. D., Streu, K. Cooperative effects in regular and bifurcated intramolecular OH···O=C interactions: A computational study. Comput. Theor. Chem., 977(1-3), 181-187, December 2011.
[127]  Rozas, I. On the nature of hydrogen bonds: an overview on computational studies and a word about patterns. Phys. Chem. Chem. Phys., 9(22), 2782-2790, February 2007.
[128]  Bertolasi, V., Pretto, L., Gilli, G., Gilli, P. π-Bond cooperativity and anticooperativity effects in resonance-assisted hydrogen bonds (RAHBs). Acta Crystallogr., B62(5), 850-863, October 2006.
[129]  Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J. Am. Chem. Soc., 111(3), 1023-128, February 1989.
[130]  Gilli, P., Bertolasi, V., Ferretti, V., Gilli, G. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H···O system by crystal structure correlation methods. J. Am. Chem. Soc., 116(3), 909-915, February 1994.
[131]  Oziminski, W. P., Krygowski, T. M. Effect of aromatization of the ring on intramolecular H-bond in 3-hydroxy-4-formylo derivatives of fulvene. Chem. Phys. Lett., 510(1-3), 53-56, June 2011.
[132]  Palusiak, M., Simon, S., Sola, M. Interplay between intramolecular resonance-assisted hydrogen bonding and aromaticity in o-hydroxyaryl aldehydes. J. Org. Chem., 71(14), 5241-5248, June 2006.
[133]  Lippincott, E. R., Schroeder, R. One-dimensional model of the hydrogen bond. J. Chem. Phys., 23(6), 1099-1105, June 1955.
[134]  Mariam, Y. H., Musin, R. N. Transition from moderate to strong hydrogen bonds: its identification and physical bases in the case of OH···O intramolecular hydrogen bonds. J. Phys. Chem. A, 112(1), 134-145, January 2008.
[135]  Musin, R. N., Mariam, Y. H. An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: trend in energetic versus geometrical consequences. J. Phys. Org. Chem., 19(7), 425-444, July 2006.
[136]  Schiott, B., Iversen, B. B., Madsen, G. K. H., Bruice, T. C. Characterization of the short strong hydrogen bond in benzoylacetone by ab initio calculations and accurate diffraction experiments. Implications for the electronic nature of low-barrier hydrogen bonds in enzymatic reactions. J. Am. Chem. Soc., 120(46), 12117-12124, November 1998.
[137]  Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V., Gilli, G. Covalent versus electrostatic nature of the strong hydrogen bond: Discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems. J. Am. Chem. Soc., 126(12), 3845-3855, March 2004.
[138]  Tayyari, S. F., Salemi, S., Tabrizi, M. Z., Behforouz, M. Molecular structure and vibrational assignment of dimethyl oxaloacetate. J. Mol. Struct., 694(1-3), 91-104, June 2004.
[139]  Fazli, M., Raissi, H., Chankandi, B., Aarabhi, M. The effect of formation of second hydrogen bond in adjacent two-ring resonance-assisted hydrogen bonds − Ab initio and QTAIM studies. J. Mol. Struct.: THEOCHEM, 942(1-3), 115-120, February 2010.
[140]  Grabowski, S. J. Properties of a ring critical point as measures of intramolecular H-bond strength. Monatshefte Chem., 133(11), 1373-1380, October, 2002.
[141]  Laurence, C., Brameld, K. A., Graton, J., Le Questel, J.-Y., Renault, E. The pKBHX Database: Toward a better understanding of hydrogen-bond basicity for medicinal chemists. J. Med. Chem., 52(14), 4073-4086, June 2009.
[142]  Gilli, P., Pretto, L., Bertolasi, V., Gilli, G. Predicting hydrogen bond strengths from acid-base molecular properties. The pKa slide rule: Toward the solution of a long-lasting problem. Acc. Chem. Res. 2009, 42(1), 33-44, January 2009.
[143]  Dávalos, J. Z., Guerrero, A., Herrero, R., Jimenez, P., Chana, A., Abboud, J. L. M., Lima, C. F. R. A. C., Santos, L. M. N. B. F., Lago, A. F. Neutral, ion gas-phase energetics and structural properties of hydroxybenzophenones. J. Org. Chem., 75(8), 2564-2571, April 2010.
[144]  Atwood, J. L., Hamada, F., Robinson, K. D., Orr, G. W., Vincent, R. L. X-ray diffraction evidence for aromatic π hydrogen bonding to water. Nature, 349(6311), 683-384, February 1991.
[145]  Levitt, M., Perutz, M. F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol., 201(4), 751-754, June 1988.
[146]  Crabtree, R. H., Siegbahn, P. E. M., Eisenstein, O., Rheingold, A. L., Koetzle, T. F. A New Intermolecular Interaction: Unconventional Hydrogen Bonds with Element−Hydride Bonds as Proton Acceptor. Accts. Chem. Res., 29(7), 348-354, July 1996.
[147]  Xu, W., Lough, A. J., Morris, R. H. Competition between NH···HIr Intramolecular Proton−Hydride Interactions and NH···FBF3- or NH···O Intermolecular Hydrogen Bonds Involving [IrH(2-thiazolidinethione)4(PCy3)](BF4)2 and Related Complexes. Inorg. Chem., 34(6), 1549-1555, March 1995.
[148]  Lough, A. J., Park, S., Ramachandran, R., Morris, R. H. Switching On and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of [Ir{H(.eta.1-SC5H4NH)}2(PCy3)2]BF4.cntdot.2.7CH2Cl2. J. Am. Chem. Soc., 116(18), 8356-8357, September 1994.
[149]  Park, S., Ramachandran, R., Lough, A. J., Morris, R. H. A new type of intramolecular H ⋯ H ⋯ H interaction involving N-H ⋯ H(Ir)⋯ H-N atoms. Crystal and molecular structure of [IrH(η1-SC5H4NH)22-SC5H4N)(PCy3)]BF4·0.72CH2Cl2. J. Chem. Soc. Chem. Commun. 1994(19), 2201-2204, October 1994.
[150]  Kodama, Y., Nishihata, K., Nishio, M. Electron spin resonance study of charge transfer complexes of the galvinoxyl radical with electron acceptors. Tetrahedron Lett., 18(24),1977, 2105-2108, June 1977.
[151]  Nishio, M., Hirota, M. CH/π interaction: Implications in organic chemistry. Tetrahedron, 45(23), 7201-7245, June 1989.
[152]  Nishio, M., Umezawa, Y., Hirota, M., Takeeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron, 51(32), 8665-8701, August 1995.
[153]  Nishio, M., Umezawa, Y., Hirota, M. The C-H/π interaction, Wiley-VCH, New York, 1998
[154]  Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S., Suezawa, H. CH/π hydrogen bonds in organic and organometallic chemistry. Cryst. Eng. Comm., 11(9), 1757-1788, September 2009.
[155]  Takahashi, O., Kohno, Y., Nishio, M. Relevance of Weak Hydrogen Bonds in the Conformation of Organic Compounds and Bioconjugates: Evidence from Recent Experimental Data and High-Level ab Initio MO Calculations. Chem. Rev., 110(10), 6049-6076, October 2010.
[156]  Umezawa, Y., Nishio, M. CH/π interactions in the crystal structure of class I MHC antigens and their complexes with peptides. Bioorg. Med. Chem., 1998, 6(12), 2507-2515, December 1998.
[157]  Umezawa, Y., Tsuboyama, S., Takahshi, H., Uzawa, J., Nishio, M. ππ interaction in the conformation of organic compounds. A database study. Tetrahedron, 55(33), 10047-10056, August 1999.
[158]  Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S., Nishio, M. CH/π Interactions Implicated in the Crystal Structure of Transition Metal Compounds − A Database Study. Eur. J. Inorg. Chem, 2002(12), 3148-3155, December 2002.
[159]  Sakaki, S., Kato, K., Miyazaki, T., Musashi, Y., Ohkubo, K., Ihara, H., Hirayama, C. Structures and binding energies of benzene-methane and benzene-benzene complexes. An ab initio SCF/MP2 study. J. Chem. Soc., Faraday Trans. 2, 89(4), 659-664, February 1993.
[160]  Gung, B. W., Fouch, R. A., Zhu, Z. Conformational Study of 1,5-Hexadiene and 1,5-Diene-3,4-diols. J. Am. Chem. Soc., 117(6), 1783-1788, February 1995.
[161]  Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M., Tanabe, K. High-Level ab Initio Calculations of Interaction Energies of C2H4−CH4 and C2H6−CH4 Dimers: A Model Study of CH/π Interaction. J. Phys. Chem. A, 103(41), 8265-8271, September 1999.
[162]  Hirota, M., Sakaibara, K., Suezawa, H., Yuzuri, T., Ankai, E., Nishio, M. Intramolecular CH-π interaction. Substituent effect as a probe for hydrogen bond-like character. J. Phys. Org. Chem., 13(10), 620-623, October 2000.
[163]  Sinnokrot, O., Sherrill, C. D. Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations. J. Am. Chem. Soc., 126(24), 7690-7697, May 2004.
[164]  Manojkumar, T. K., Choi, H. S., Hong, B. H., Tarakeshwar, P., Kim, K. S. p-Benzoquinone-benzene clusters as potential nanomechanical devices: a theoretical study. J. Chem. Phys., 121(2), 841-846, July 2004.
[165]  [Fujii, A., Shibasaki, K., Kazama, T., Itaya, R., Mikami, N., Tsuzuki, S. Experimental and theoretical determination of the accurate interaction energies in benzene-halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Phys. Chem. Chem. Phys., 10(19), 2836-2843, May 2008.
[166]  Fujii, A., Tsuzuki, S. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Phys. Chem. Chem. Phys, 10(19), 2584-2594, May 2008.
[167]  Suezawa, H., Hashimoto, T., Tsuchinaga, K., Yoshida, T., Yuzuri, T., Sakakibara, K., Nishio, M. Electronic substituent effect on intramolecular CH/π interaction as evidenced by NOE experiments. J. Chem. Soc., Perkin Trans. 2, 2000(6), 1243-1249, June 2006.
[168]  Takahashi, O., Kohno, Y., Saito, K., Nishio, M. Prevalence of the Alkyl/Phenyl-Folded Conformation in Benzylic Compounds C6H5CH2-X-R (X = O, CH2, CO, S, SO, SO2): Significance of the CH/π Interaction as Evidenced by High-Level Ab Initio MO Calculations. Chem. Eur. J., 9(3), 756-762, February 2003.
[169]  Levitt, M., Perutz, M. F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol., 201(4), 751-754, June 1988.
[170]  Toth, G., Kover, K. E., Murphy, R. F., Lovas, S. Aromatic−Backbone Interactions in α-Helices. J. Phys. Chem. B, 108(26), 9287-9296, May 2004.
[171]  Wlodawer, A., Walter, J., Huber, R., Sjolin, L. Structure of bovine pancreatic trypsin inhibitor: Results of joint neutron and X-ray refinement of crystal form II. J. Mol. Biol., 180(2), 301-329, December 1984.
[172]  David, J. G., Hallam, H. E. Hydrogen-bonding studies of thiophenols. Spectrochimica Acta, 21(4), 841-850, April 1965.
[173]  Josien, M. L., Sourisseau, G. Le spectre infrarouge de l’acide chlorhydrique en solution - formation de complexes organiques. Bull. Soc. Chim. Fr., 22(1), 178-183, March 1955.
[174]  Oki, M., Iwamura, H. Steric Effects on the O-H...π Interaction in 2-Hydroxybiphenyl. J. Am. Chem. Soc., 89(3), 576-579, February 1967.
[175]  Yoshida, Z., Osawa, E. Intermolecular Hydrogen Bond Involving a π-Base as the Proton Acceptor. II. Interaction between Phenol and Various π-Bases. Preliminary Infrared Study. J. Am. Chem. Soc., 87(7), 1467-1469, April 1965.
[176]  Korenaga, T., Tanaka, H., Ema, T., Sakai, T. Intermolecular oxygen atom⋯π interaction in the crystal packing of chiral amino alcohol bearing a pentafluorophenyl group. J. Fluorine Chem., 122(2), 201-205, August 2003.
[177]  Flocco, M, M., Mowbray, S. L. Planar Stacking Interactions of Arginine and Aromatic Side-Chains in Proteins. J. Mol. Biol., 235(2), 709-717, January 1994.
[178]  Ueji, S., Nakatsu, K., Yoshida, H., Kinoshita, K. X-ray and IR studies on crystal and molecular structure of 4-nitro-2,6-diphenylphenol. Stereochemistry of bifurcated OH...π hydrogen bonds. Tetrahedron Lett., 23(11), 1173-1176, March 1982.
[179]  Goodwin, J. T., Conradi, R. A., Ho, N. F., Burton, P. S. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J. Med. Chem., 44(22), 3721-3729, October 2001. Erratum in: J. Med. Chem. 2002, 45(10), 2122, May 2002.
[180]  Goodwin, J. T., Mao, B., Vidmar, T. J., Conradi, R. A., Burton, P. S. Strategies toward predicting peptide cellular permeability from computed molecular descriptors. J. Pept. Res., 53(4), 355-369, April 1999.
[181]  Wang, B., Gangwar, S., Pauletti, G., Siahaan, T., Borchardt, R. T. Synthesis of an esterase-sensitive cyclic prodrug of a model hexapeptide having enhanced membrane permeability and enzymic stability using a 3-(2’-hydroxy-4’,6’-dimethylphenyl)-3,3-dimethylpropionic acid promoiety. Kazmierski W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine, vol 23. Humana Press, 1999, 53-69.
[182]  Gangwar, S.; Pauletti, G. M.; Siahaan, T. J.; Stella, V. J.; Borchardt, R. T. Synthesis of an esterase-sensitive cyclic prodrug of a model hexapeptide having enhanced membrane permeability and enzymatic stability using an acyloxyalkoxy promoiety. Kazmierski W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine, vol 23. Humana Press, 1999, 37-51.
[183]  Bilton, C., Allen, F. H., Shields, G. P., Howard, J. A. K. Intramolecular hydrogen bonds: common motifs, probabilities of formation and implications for supramolecular organization. Acta Crystallogr., B56(5), 849-856, October 2000.
[184]  Rusinska-Roszak D., Sowinski, G. Estimation of the Intramolecular O−H···O=C Hydrogen Bond Energy via the Molecular Tailoring Approach. Part I: Aliphatic Structures. J. Chem. Inf. Model., 54(7), 1963-1977, June 2014.
[185]  Grabowski, S. J. An estimation of strength of intramolecular hydrogen bonds − ab initio and AIM studies. J. Mol. Struct.: THEOCHEM, 562(1-3), 137-143, May 2001.
[186]  Gromak, V. V. Ab initio study of intra- and intermolecular H-bond energies in π-conjugated molecular systems. J. Mol. Struct.: THEOCHEM, 726(1-3), 213-224, August 2005.
[187]  Hehre, W. J., Radom, L., Schleyer, P.v.R., Pople, J. A. Ab Initio Molecular Orbital Theory, John Wiley and Sons; New York, 1986, 1-590.
[188]  Buemi, G., Zuccarello, F. Importance of steric effect on the hydrogen bond strength of malondialdehyde and acetylacetone 3-substituted derivatives. An ab initio study. Electron. J. Theor. Chem., 2(1), 302-314, January 1997.
[189]  Zarycz, N., Aucar, G. A., Della Vedova, C. O. NMR spectroscopic parameters of molecular systems with strong hydrogen bonds. J. Phys. Chem. A, 114(26), 7162-7172, June 2011.
[190]  Fuster, F., Grabowski, S. J. Intramolecular hydrogen bonds: the QTAIM and ELF characteristics. J. Phys. Chem. A, 115(35), 10078-10086, July 2011.
[191]  Woodford, J. N. Density functional theory and atoms-in-molecules investigation of intramolecular hydrogen bonding in derivatives of malonaldehyde and implications for resonance-assisted hydrogen bonding. J. Phys. Chem. A, 111(34), 8519-8530, August 2007.
[192]  Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Electron density shift description of non-bonding intramolecular interactions. Comput. Theor. Chem., 991, 124-133, July 2012.
[193]  Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv.Drug Deliv.Rev., 46(1-3), 3-26, March 2001.
[194]  Green, D.; Hirsh, J.; Heit, J.; Prins, M.; Davidson, B.; Lensing, A. W. A. Low molecular weight heparin: a critical analysis of clinical trials. Pharmacol. Rev., 46(1), 89-109, March 1994.
[195]  Kemmel, M.; Pore, V.; Ritala, M.; Leskelä, M.; Lindén, M. Atomic Layer Deposition in Nanometer-Level Replication of Cellulosic Substances and Preparation of Photocatalytic TiO2/Cellulose Composites. J. Am. Chem. Soc., 127(41), 14178-14179, October 2005.
[196]  Leskelä, M.; Kemmel, M.; Kukli, K.; Pore, V.; Santala, E.; Ritala, M.; Lu, J. Exploitation of atomic layer deposition for nanostructured materials. Mater. Sci. Eng. C, 27(5-8), 1504-1508, September 2007.
[197]  Fernandes, A. N.; Thomas, L. H.; Altaner, C. M.; Callow, P.; Forssyth, V. T.; Apperley, D. C.; Kennedy, C. J.; Jarvis, M. C. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. U.S.A., 108(47), E1195-E1203, November 2011.
[198]  Momeni, K.; Yassar, R. S. Analytical Formulation of Stress Distribution in Cellulose Nanocomposites. J. Comput. Theor. Nanosci., 6(7), 1511-1518, July 2009.
[199]  Ferenczy, G. G., Keseru, G. M. On the enthalpic preference of fragment binding, Med. Chem. Commun., 7(2), 332-337, February 2016.
[200]  Kawasaki, Y., Chufan, E., LaFont, V., Hidaka, K., Kiso, Y., Amzel, L. M., Freire, E. How much binding affinity can be gained by filling a cavity? Chem. Biol. Drug Des., 75(2), 143-151, February 2010.
[201]  Freire, E. A Thermodynamic Guide to Affinity Optimization of Drug Candidates, Proteomics and Protein-Protein Interactions: Biology, Chemistry, Bioinformatics, and Drug Design, Waksman (Ed.), Springer, New York, 2005, 291-307 (Chapter 13).
[202]  Hitchcock, S. A. Structural Modifications that Alter the P-Glycoprotein Efflux Properties of Compounds. J. Med. Chem., 55(11), 4877-4895, April 2012.
[203]  Raub, T. [P-Glycoprotein Recognition of Substrates and Circumvention through Rational Drug Design. J. Mol. Pharm., 3(1), 3-25, January 2006.
[204]  Abraham, M. H. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev., 22(2), 73-83, February 1993.
[205]  Mudra, D. R.; Desino, K. E.; Desai, P. V. In Silico, In Vitro and In Situ Models to Assess Interplay Between CYP3A and P-gp. Curr. Drug Metab., 12(8), 750-773, August 2011.
[206]  Desfrancois, C., Carles, S., Schermann, J. P. Weakly bound clusters of biological interest. Chem. Rev., 100(11), 3943-3962, November 2000.
[207]  Alex, A., Millan, D. S., Perez, M., Wakenhut, F., Whitlock, G.A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med. Chem. Comm., 2(7), 669-674, July 2011.
[208]  Yi, S., Kim, J.-H., Cho, Y.-J., Lee, J., Choi, T.-S., Cho, D. W., Pac, C., Han, W.-S., Son, H.-J., Kang, S. O. Stable Blue Phosphorescence Iridium(III) Cyclometalated Complexes Prompted by Intramolecular Hydrogen Bond in Ancillary Ligand. Inorg. Chem., 55 (7), 3324-3331, July 2016.
[209]  McDonagh, A. F., Lightner, D. A. Influence of conformation and intramolecular hydrogen bonding on the acyl glucuronidation and biliary excretion of acetylenic bis-dipyrrinones related to bilirubin. J. Med. Chem., 50(3), 480-488, February 2007.
[210]  Desai, P. V., Raub, T. J.; Blanco, M.-J. How hydrogen bonds impact P-glycoprotein transport and permeability, Bioorg. & Med. Chem. Let., 22(21), 6540-6548, November 2012.
[211]  Huang, Y., Unni, A. K., Thadani, A. N., Rawal, V. H. Hydrogen Bonding: Single Enantiomers from a Chiral-Alcohol Catalyst. Nature, 424 (6945), 146-146, July 2003.
[212]  Davoren, J. E., O’Neil, S. V., Anderson, D. P., Brodney, M. A., Chenard, L., Dlugolenski, K., Edgerton, J. R., Green, M., Garnsey, M., Grimwood, S., Harris, A. R., Kauffman, G. W., LaChapelle, E., Lazzaro, J. T., Lee, C.-W., Lotarski, S. M., Nason, D. M., Obach, R. S., Reinhart, V., Salomon-Ferrer, R., Steyn, S. J., Webb, D., Yan, J., Zhang, L. Design and Optimization of Selective Azaindole Amide M1 Positive Allosteric Modulators. Bioorg. Med. Chem. Lett., 26 (2), 650-655, January 2016.
[213]  Sakamoto, T., Koga, Y., Hikota, M., Matsuki, K., Murakami, M., Kikkawa, K., Fujishige, K., Kotera, J., Omori, K., Morimoto, H., Yamada, K. Design and Synthesis of Novel 5-(3,4,5-Trimethoxybenzoyl)-4-Aminopyrimidine Derivatives as Potent and Selective Phosphodiesterase 5 Inhibitors: Scaffold Hopping Using a Pseudo-Ring by Intramolecular Hydrogen Bond Formation. Bioorg. Med. Chem. Lett., 24 (22), 5175-5180, November 2014.
[214]  de Vicente, J., Lemoine, R., Bartlett, M., Hermann, J. C., Hekmat-Nejad, M., Henningsen, R., Jin, S., Kuglstatter, A., Li, H., Lovey, A. J., Menke, J., Niu, L., Patel, V., Petersen, A., Setti, L., Shao, A., Tivitmahaisoon, P., Vu, M. D., Soth, M. Scaffold Hopping towards Potent and Selective JAK3 Inhibitors: Discovery of Novel C-5 Substituted Pyrrolopyrazines. Bioorg. Med. Chem. Lett., 24 (21), 4969-4975, November 2014.
[215]  Miah, A. H., Copley, R. C. B., O’Flynn, D., Percy, J. M., Procopiou, P. A. Lead Identification and Structure−activity Relationships of Heteroarylpyrazole Arylsulfonamides as Allosteric CCChemokine Receptor 4 (CCR4) Antagonists. Org. Biomol. Chem., 12(11), 1779-1792, March 2014.
[216]  Ettorre, A., D’Andrea, P., Mauro, S., Porcelloni, M., Rossi, C., Altamura, M., Catalioto, R. M., Giuliani, S., Maggi, C. A., Fattori, D. hNK2 Receptor Antagonists. The Use of Intramolecular Hydrogen Bonding to Increase Solubility and Membrane Permeability. Bioorg. Med. Chem. Lett., 21(6), 1807-1809, June 2011.
[217]  Labby, K. J., Xue, F., Kraus, J. M., Ji, H., Mataka, J., Li, H., Martásek, P., Roman, L. J., Poulos, T. L., Silverman, R. B. Intramolecular Hydrogen Bonding: A Potential Strategy for More Bioavailable Inhibitors of Neuronal Nitric Oxide Synthase. Bioorg. Med. Chem. 2012, 20(7), 2435−2443, April 2012.
[218]  Hickey, J. L., Zaretsky, S., St. Denis, M. A., Kumar Chakka, S., Morshed, M. M., Scully, C. C. G., Roughton, A. L., Yudin, A. K. Passive Membrane Permeability of Macrocycles Can Be Controlled by Exocyclic Amide Bonds. J. Med. Chem., 59(11), 5368-5376, November, 2016.
[219]  Hajduk, P. J., Sauer, D. R. Statistical Analysis of the Effects of Common Chemical Substituents on Ligand Potency. J. Med. Chem., 51(3), 553-564, March 2008.
[220]  Giordanetto, F., Tyrchan, C., Ulander, J. Intramolecular Hydrogen Bond Expectations in Medicinal Chemistry. ACS Med. Chem. Lett., 8(3), 139-142, March 2017.
[221]  Accordino, S. R., Rodríguez-Fris, J. A., Appignanesi, G. A. Wrapping Effects within a Proposed Function-Rescue Strategy for the Y220C Oncogenic Mutation of Protein p53. PLoS ONE 8(1): e55123, January 2013.
[222]  Nomura, M., Kinoshita, S., Satoh, H., Maeda, T., Murakami, K., Tsunoda, M., Miyachi, H., Awano, K. (3-Substitutedbenzyl) thiazolidine-2,4-diones as structurally new antihyperglycemic agents. Bioorg. Med. Chem. Lett., 9(4), 533-538, February 1999.
[223]  Harter, W. G., Albrect, H., Brady, K., Caprathe, B., Dunbar, J., Gilmore, J., Hays, S., Kostlan, C. R., Lunneya, B., Walker, N. The design and synthesis of sulfonamides as caspase-1 inhibitors. Bioorg. Med. Chem. Lett., 14(3), 809-812, February 2004.
[224]  Van Zandt, M. C., Sibley, E. O., McCann, E. E., Combs, K. J., Flam, B., Sawicki, D. R., Sabetta, A., Carrington, A., Sredy, J., Howard, E., Mitschler, A., Podjarny, A. D. Design and synthesis of highly potent and selective (2-arylcarbamoyl-phenoxy)-acetic acid inhibitors of aldose reductase for treatment of chronic diabetic complications. Bioorg. Med. Chem., 12(21), 5661-5675, November 2004.
[225]  Hodge, C. N., Pierce, J. A diazine heterocycle replaces a sixmembered hydrogen-bonded array in the active site of scytalone dehydratase. Bioorg. Med. Chem. Lett., 3(8), 1605-1608, April 1993.
[226]  Furet, P., Bold, G., Hofmann, F., Manley, P., Meyer, T., Altmann, K.-H. Identification of a new chemical class of potent angiogenesis inhibitors based on conformational considerations and database searching. Bioorg. Med. Chem. Lett., 13(18), 2967-2971, September 2003.
[227]  Furet, P., Caravatti, G., Guagnano, V., Lang, M., Meyer, T., Schoepfer, J. Entry into a new class of protein kinase inhibitors by pseudo ring design. Bioorg. Med. Chem. Lett., 18(3), 897-900, February 2008.
[228]  Menear, K. A., Adcock, C., Alonso, F. C., Blackburn, K., Copsey, L., Drzewiecki, J., Fundo, A., Le Gall, A., Gomez, S., Javaid, H., Lence, C. F., Martin, N. M. B., Mydlowski, C., Smith, G. C. M. Novel alkoxybenzamide inhibitors of poly(ADP-ribose) polymerase. Bioorg. Med. Chem. Lett., 18(14), 3942-3945, July 2008.
[229]  Lord, A.-M., Mahon, M. F., Lloyd, M. D., Threadgill, M. D. Design, synthesis, and evaluation in vitro of quinoline-8-carboxamides, a new class of poly(adenosine-diphosphate-ribose) polymerase-1 (PARP-1) inhibitor. J. Med. Chem., 52(3), 868-877, February 2009.
[230]  Ashwood, V. A., Field, M. J., Horwell, D. C., Julien-Larose, C., Lewthwaite, R. A., McCleary, S., Pritchard, M. C., Raphy, J., Singh, L. Utilization of an intramolecular hydrogen bond to increase the CNS penetration of an NK1 receptor antagonist. J. Med. Chem., 44(14), 2276-2285, July 2001.
[231]  Sasaki, S., Cho, N., Nara, Y., Harada, M., Endo, S., Suzuki, N., Furuya, S., Fujino, M. Discovery of a thieno[2,3-d]pyrimidine-2, 4-dione bearing a p-methoxyureidophenyl moiety at the 6-position: a highly potent and orally bioavailable non-peptide antagonist for the human luteinizing hormone-releasing hormone receptor. J. Med. Chem., 46(1), 113-124, January 2003.
[232]  Inbaraj, J. J., Chignell, C. F. Cytotoxic action of juglone and plumbagin: A mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol., 17(1), 55-62, January 2004.
[233]  Assimopoulu, A. N., Boskou, D., Papageorgiou, V. P. Antioxidant activities of alkannin, shikonin and alkanna tinctoria root extracts in oil substrates. Food Chem., 87(3), 433-438, September 2004.
[234]  Schreiber, J., Mottley, C., Sinha, B. K., Kalyanaraman, B., Mason, R. P. One-electron reduction of daunomycin, daunomycinone, and 7-deoxydaunomycinone by the xanthine/xanthine oxidase system: Detection of semiquinone free radicals by electron spin resonance. J. Am. Chem. Soc., 109(2), 348-351, January 1987.
[235]  Armendáriz-Vidales, G., Martínez-González, E., Cuevas-Fernández, H. J., Fernández-Campos, D. O., Burgos-Castillo, R. C., Frontana, C. In situ characterization by cyclic voltammetry and conductance of composites based on polypyrrole, multi-walled carbon nanotubes and cobalt phthalocyanine. Electrochim. Acta, 89, 840-847, February 2013.
[236]  Foti, M. C., Johnson, E. R., Vinqvist, M. R., Wright, J. S., Barclay, L. R. C., Ingold, K. U. Naphthalene diols: A new class of antioxidants intramolecular hydrogen bonding in catechols, naphthalene diols, and their aryloxyl radicals. J. Org. Chem., 67(15), 5190-5196, July 2002.
[237]  Foti, M. C., Amorati, R., Pedulli, G. F., Daquino, C., Pratt, D. A., Ingold, K. U. Influence of “Remote” intramolecular hydrogen bonds on the stabilities of phenoxyl radicals and benzyl cations. J. Org. Chem., 75(13), 4434-4440, July 2010.
[238]  Martínez-Cifuentes, M., Weiss-López, B. E., Santos L. S., Araya-Maturana, R. Intramolecular Hydrogen Bond in Biologically Active o-Carbonyl Hydroquinones. Molecules, 19(7), 9354-9368, July 2014.
[239]  Over, B., McCarren, P., Artursson, P., Foley, M., F Giordanetto, F., Grönberg, G., Hilgendorf, C., Lee, M. D. IV, Matsson, P., Muncipinto, G., Pellisson, M., Perry, M. W. D., Svensson, R., Duvall, J. R., Kihlberg, J. Impact of Stereospecific Intramolecular Hydrogen Bonding on Cell Permeability and Physicochemical Properties. J. Med. Chem., 57(6), 2746-2754, February 2014.
[240]  El Tayar, N., Mark, A. E., Vallat, P., Brunne, R. M., Testa, B., van Gunsteren, W. F. Solvent-dependent conformation and hydrogenbonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. J. Med. Chem., 36(24), 3757-3764, November 1993.
[241]  Shalaeva, M., Caron, G., Abramov, Y. A., O’Connell, T. N., Plummer, M. S., Yalamanchi, G., Farley, K. A., Goetz, G. H., Philippe, L., Shapiro, M. J. Integrating Intramolecular Hydrogen Bonding (IMHB) Considerations in Drug Discovery Using ΔlogP As a Tool. J. Med. Chem., 56(12), 4870-4879, June 2013.
[242]  Vieth, M., Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem., 49(12), 3451-3453, June 2006.
[243]  Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S., Hopkins, A. L. Global mapping of pharmacological space. Nat. Biotechnol., 24(7), 805-815, July 2006.
[244]  Terrett, N. Drugs in middle space. Med. Chem. Commun. 2013(3), 474-475, March 2013.
[245]  Driggers, E. M., Hale, S. P., Lee, J., Terrett, N. F. The exploration of macrocycles for drug discovery - an underexploited structural class. Nat. Rev. Drug Discovery, 7(7), 608-624, July 2008.
[246]  Giordanetto, F., Kihlberg, J. Macrocyclic drugs and clinical candidates: What can medicinal chemists learn from their properties? J. Med. Chem., 57(2), 278-295, January 2014.
[247]  Madrid, P. B., Liou, A. P., De Risi, J. L., Guy, R. K. Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug-resistant P. falciparum. J. Med. Chem., 49(15), 4535-4543, July 2006.
[248]  Huque, F. T.; Platts, J. A. The effect of intramolecular interactions on hydrogen bond acidity. Org. Biomol. Chem., 1(8), 1419-1424, March 2003.
[249]  Wright, L. L., Painter, G. R. Role of desolvation energy in the nonfacilitated membrane permeability of dideoxyribose analogs of thymidine. Mol. Pharmacol., 41(5), 957-962, May 1992.
[250]  Panigrahi, S. K. Strong and week hydrogen bonds in protein-ligand complexes of kinases: a comparative study. Amino Acids, 34(4), 617-633, May 2008.
[251]  Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., Varma, A. K. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing. PLoS ONE, 5(8): e12029.
[252]  Fernández, A., Lynch, M. Non-adaptive origins of interactome complexity. Nature, 474(7352), 502-505, June 2011.
[253]  Fernández, A. Transformative Concepts for Drug Design: Target Wrapping. Springer, Heidelberg, 2010.
[254]  Fernández, A., Scott, R. Adherence of Packing Defects in Soluble Proteins. Phys. Rev. Lett., 91(1), 018102-018105, July 2003.
[255]  Fernández, A., Scott, R. Dehydron: A Structurally Encoded Signal for Protein Interaction. Biophysical J., 85(3), 1914-1928, September 2003.
[256]  Fernández, A. Keeping Dry and Crossing Membranes. Nature Biotech., 22(9),1081-1084, September 2004.
[257]  Pietrosemoli, N., Crespo, A., Fernández, A. Dehydration propensity of orderdisorder intermediate regions in soluble proteins. J. Prot. Res., 6(9), 3519-3526, September 2007.
[258]  Schulz, E., Frechero, M., Appignanesi, G., Fernández, A. Sub-Nanoscale Surface Ruggedness Provides a Water-Tight Seal for Exposed Regions in Soluble Protein Structure. PLoS ONE, 5(9), e12844-12849, September 2010. Correction: PLoS One.; 8(12).
[259]  Accordino, S. R., Rodriguez-Fris, J. A., Appignanesi, G. A., Fernández, S. Unifying motif of intermolecular cooperativity in protein associations. Eur. Phys. J. E., 2012, 35(7) 59-65, July 2012.
[260]  Accordino, S. R., Morini, M. A., Sierra, M. B., Rodriguez Fris, J. A., Appignanesi, G. A., Fernández, A. Wrapping mimicking in drug-like small molecules disruptive of protein-protein interfaces. Proteins: Struct. Funct. and Bioinf., 80(7), 1755-1765, July 2012.
[261]  Abraham, M. H., Ibrahim, A., Zissimos, A. M., Zhao, Y. H., Comer, J., Reynolds, D. P. Application of hydrogen bonding calculations in property based drug design. Drug Discovery Today, 7(20), 1056-1063, October 2002.
[262]  Japertas, P., Didziapetris, R., Petrauskas, A. Fragmental Methods in the Design of New Compounds. Applications of The Advanced Algorithm Builder. Molec. Inform., 21(1), 23-37, May 2002.
[263]  Gancia, E., Montana, J. G., Manallack, D. T. Theoretical hydrogen bonding parameters for drug design. J. Mol. Graphics Modell., 19(3-4), 349-362, June 2001.
[264]  Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 107(13), 3902-3909, June 1985.
[265]  Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem., 10(2), 209-220, March 1989.
[266]  McNaught, A. D., Wilkinson, A. IUPAC Compendium of Chemical Terminology, T06252.pdf (accessed May 2017).
[267]  Mockus, J., Stobaugh, R .E. Chemical-abstracts-service chemical registry system. 7. Tautomerism and Alternating Bonds. J. Chem. Inf. Comp. Sci., 20(1), 18-22, February 1980.
[268]  Trepalin, S. V., Skorenko, A. V., Balakin, K. V., Nasonov, A. F., Lang, S. A., Ivashchenko, A. A., Savchuk, N. P. Advanced exact structure searching in large databases of chemical compounds. J. Chem. Inf. Comput. Sci., 43(3), 852-860, May 2003.
[269]  Sayle, R., Delany, J. Canonicalization and Enumeration of Tautomers. Cambridge, UK: EuroMUG, 1999. (accesed 12th june 2017).
[270]  Testa, B., Carrupt, P. A., Gaillard, P., Tsai, R. S. Intramolecular interactions encoded in lipophilicity: their nature and significance. In: Pliska, V., Testa, B., van deWaterbeemd, H., eds. Lipophilicity in Drug Action and Toxicology. Weinheim, Germany: VCH, 1996, 49-71.
[271]  Lopez-Rodriguez, M. L., Benhamu, B., Viso, A., Murcia, M., Pardo, L. Study of the bioactive conformation of novel 5-HT4 receptor ligands: influence of an intramolecular hydrogen bond. Tetrahedron, 57(31), 6745-6749, Julio 2001.
[272]  Civcir, P. U. A theoretical study of tautomerism of 2,6-dithioxanthine in the gas and aqueous phases using AM1 and PM3 methods. J. Mol. Struc.-Theochem; 572(1-3), 5-13, September 2001.
[273]  Civcir, P. U. A theoretical study of tautomerism of cytosine, thymine, uracil and their 1-methyl analogues in the gas and aqueous phases using AM1 and PM3. J. Mol. Struc.-Theochem, 532(1-3), 157-169, November 2000.
[274]  Sanchez-Moreno, M., Sanz, A. M., Gomez-Contreras, F., Navarro, P., Marín, C., Ramírez-Macías, I., Rosales, M. J., Olmo, F., García-Aranda, I., Campayo, L., Cano Benjumea, M. C., Arrebola, F., Yunta, M. J. R. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J. Med. Chem., 54(4), 970-979, February 2011.
[275]  Sanchez-Moreno, M, Gómez-Contreras, F., Navarro, P., Marín, C., Olmo, F., Yunta, M. J. R., Sanz, A. M., Rosales, M. J., Cano, M. C., Campayo, L. Phthalazine derivatives containing imidazole rings behave as Fe- SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse mode of infection. J. Med. Chem., 55(22), 9900-9913, October 2012.
[276]  Navarro, P., Sanchez-Moreno, M., Marin, C., Garcia-España, E., Ramirez-Macias, I., Olmo, F., Rosales, M. J., Gomez-Contreras, F., Yunta, M. J. R., Gutierrez-Sánchez, R. In vitro Leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of Leishmania infantum and Leishmania braziliensis species. Parasitology, 141(8), 1031-1043, May 2014.
[277]  Sanchez-Moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Ramírez-Macías, I., Rosales, M. J., Campayo, L., Cano-Benjumea, C., Sanz, A. M., Yunta, M. J. R. Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis. Parasitology, 142(8), 1115-1129, July 2015.
[278]  Olmo, F., Gómez-Contreras, F., Navarro, P., Marín, C., Yunta, M. J. R., Cano, C., Campayo, L., Martín-Oliva, D., Rosales, M. J. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur. J. Med. Chem., 106, 106-119, December 2015.
[279]  Fersht, A. The pH dependence of enzyme catalysis. In:. Structure and Mechanism in Protein Science. 2nd ed. Fersht, A, ed., Freeman WH and Company, New York, 1999, 169-190.
[280]  Böhm, H., Stahl, M. The use of scoring functions in drug discovery applications. In: Reviews in Computational Chemistry, Lipkowitz, K, Boyd D, eds. John Wiley & Sons Inc., 2002, 41-86.
[281]  Walters, W. P., Stahl, M. T, Murcko, M, A. Virtual screening—an overview. Drug Discov Today, 3(4), 160-178, April 1998.
[282]  Taylor, R. D., Jewsbury, P. J., Essex, J. W. A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des., 16(3), 151-166, March 2002.
[283]  Kubinyi, H. Drug research: myths, hype and reality. Nat. Rev. Drug Discov., 2(8), 665-668, August 2003.
[284]  Pearlman, R. S., Khashan, R., Wong, D., Balducci, R. Protoplex: user-control over tautomeric and protonation state. Abstr Pap Am Chem S 2002; 224:232-COMP.
[285]  Sadowski J. A tautomer and protonation pre-processor for virtual screening. Abstr. Pap. Am. Chem. Soc., 224th ACS Nat. Meeting, Boston, MA, 224, U504-U504, July 2002.
[286]  Pospisil, P., Ballmer, P., Scapozza, L., Folkers, G. Tautomerism in computer-aided drug design. J. Recept. Signal Transduc., 23(4), 361-371, December 2003.
[287]  Fujita, T., Nishioka, T., Nakajima, M. Hydrogen-bonding parameter and its significance in quantitative structure-activity studies. J. Med. Chem., 20(8), 1071-1081, Agosto, 1977.
[288]  Charton, M., Charton, B. I. The structural dependence of amino acid hydrophobicity parameters. J. Theor. Biol., 99(4), 629-644, December 1982.
[289]  Wilson, L. Y., Famini, G. R. Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices. J. Med. Chem., 34(5), 1668-1674, May 1991.
[290]  Murray, J. S., Politzer, P. Correlations between the solvent hydrogen-bond-donating parameter, α, and the calculated molecular surface electrostatic potential. J. Org. Chem., 56(23), 6715-6717, November 1991.
[291]  Dearden, J. C., Cronin, M. T. D., Wee, D. In QSAR and molecular modeling: concepts, computational tools and biological applications; Sanz, F., Giraldo, J., Manaut, F., Eds.; Proust Science Publishers, Barcelona, Spain, 1995, 117-119.
[292]  Dearden, J. C.;,Cronin, M. T. D., Wee, D. Prediction of hydrogen bond donor ability using new quantum chemical parameters. J. Pharm. Pharmacol., 49(S4), 110-110, June 1997.
[293]  Dearden, J. C., Ghafourian, T. Hydrogen Bonding Parameters for QSAR: Comparison of Indicator Variables, Hydrogen Bond Counts, Molecular Orbital and Other Parameters. J. Chem. Inf. Comput. Sci., 39(1), 231-235, January 1999.
[294]  Kollman, P. A., Allen, L. C. Theory of the hydrogen bond. Chem. ReV., 72(3), 283-303, June 1972.
[295]  Smith, D. A., Ed.; Modeling the hydrogen bond; American Chemistry Society: Washington, DC, 1994, Vol. 569.
[296]  Scheiner, S., Kar, T. The Nonexistence of Specially Stabilized Hydrogen Bonds in Enzymes. J. Am. Chem. Soc., 117(26), 6970-6973, July 1995.
[297]  Pan, Y., McAllister, M. A. Characterization of Low-Barrier Hydrogen Bonds. 5. Microsolvation of Enol-Enolate. An ab Initio and DFT Investigation. J. Org. Chem., 62(23), 8171-8176, November 1997.
[298]  Rablen, P. R., Lockman, J. W., Jorgensen, W. L. Ab Initio Study of Hydrogen-Bonded Complexes of Small Organic Molecules with Water. J. Phys. Chem. A, 102(21), 3782-3797, May 1998.
[299]  Gu, J., Leszczynski, J. Structures and Properties of the Planar G·C·G·C Tetrads: Ab Initio HF and DFT Studies J. Phys. Chem. A, 104(31), 7353-7358, August 2000.
[300]  Lukin, O., Leszczynski, J. Rationalizing the Strength of Hydrogen-Bonded Complexes. Ab Initio HF and DFT Studies. J. Phys. Chem. A, 106(29), 6775-6782, July 2002.
[301]  Sukhanov, O. S., Shishkin, O. V., Gorb, L., Podolyan, Y., Leszczynski, J. Molecular Structure and Hydrogen Bonding in Polyhydrated Complexes of Adenine: A DFT Study. J. Phys. Chem. B, 107(12), 2846-2852, March 2003.
[302]  Domingo, L. R., Andres, J. J. Org. Chem., 68(22), 8662-8668, October 2003.
[303]  Ireta, J., Neugebauer, J., Scheffler, M. J. Phys. Chem. A, 108(26), 5692-5698, July 2004.
[304]  Guo, H., Gresh, N., Roques, B. P., Salahub, D. R. Many-Body Effects in Systems of Peptide Hydrogen-Bonded Networks and Their Contributions to Ligand Binding: A Comparison of the Performances of DFT and Polarizable Molecular Mechanics. J. Phys. Chem. B, 104(41), 9746-9754, October 2000.
[305]  Alia, J. M., Edwards, H. G. M. Vibrational Spectroscopic Properties of Hydrogen Bonded Acetonitrile Studied by DFT. J. Phys. Chem. A, 109(35), 7977-7987, September 2005.
[306]  Quinonero, D., Garau, C., Frontera, A., Ballester, P., Costa, A., Deya, P. M. Structure and Binding Energy of Anion−π and Cation−π Complexes: A Comparison of MP2, RI-MP2, DFT, and DF-DFT Methods. J. Phys. Chem. A, 109(20), 4632-4637, May 2005.
[307]  Zhao, Y., Truhlar, D. G. Multicoefficient Extrapolated Density Functional Theory Studies of π···π Interactions: The Benzene Dimer. J. Phys. Chem. A, 109(19), 4209-4212, May 2005.
[308]  Raevsky, O. A. (1997) Hydrogen Bond Strength Estimation by means of HYBOT. In Computer-Assisted Lead Finding and Optimisation, Waterbeemd, H., Testa, B., Folkers, G., eds., Verlag, Basel, 1997, 367-378.
[309]  Abraham, M. H. Scales of hydrogen bonding - their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22(2), 73-83, April 1993.
[310]  Abraham, M. H., Platts, J. A. Hydrogen bond structural group constants. J. Org. Chem., 66(10), 3484-3491, May 2001.
[311]  Van de Waterbeemd, H., Smith, D. A., Beaumont, K., Walker, D. K. Property-based design: optimisation of drug absorption and pharmacokinetics. J. Med. Chem., 44(9), 1313-1333, April 2001.
[312]  Jaguar, Schrödinger, LLC, New York, NY, 2017.
[313]  Boys, S. F., Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19(4), 553-566, August 1970.
[314]  Scheiner, S., Kar, T., Gu, Y. Strength of the CαH··O Hydrogen Bond of Amino Acid Residues. J. Biol. Chem., 276, 9832-9837, March 2001.
[315]  Zhao, Y. H. Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Butina, D., Beck, G., Sherborne, B., Cooper, I., Platts, J. A. (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90(6), 749-784, June 2001. Erratum in: J. Pharm. Sci., 91(2), 605, February 2002.
[316]  Ghose, A. K., Viswanadhan, V. N., Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1(1), 55-68, January 1999.
[317]  Oprea, T. I., Davis, A. M., Teague, S. J., Leeson, P. D. Is There a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci., 41(5), 1308-1315, September-October 2001.
[318]  Karthick, T., Tandon, P., Singh, S., Agarwal, P., Srivastava, A. Characterization and intramolecular bonding patterns of busulfan: Experimental and quantum chemical approach Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 390-399, February 2017.
[319]  Chatterjee, C., Incarvito, C. D., Burns, L. A., Vaccaro, P. H. Electronic structure and proton transfer in ground-state hexafluoroacetylacetone. J. Phys. Chem. A, 114(24), 6630-6640, June 2010.
[320]  Rozenberg, M., Loewenschuss, A., Marcus, Y. An empiricalcorrelation between stretching vibration redshift and hydrogen bond length. Phys. Chem. Chem. Phys., 2(12), 2699-2702, March 2000.
[321]  Wojtulewski, S., Grabowski, S. J. Different donors and acceptors for intramolecular hydrogen bonds. Chem. Phys. Lett., 378(3-4), 388-394, September 2003.
[322]  Grabowski, J. S. Ab initio calculations on conventional and unconventional hydrogen bonds − Study of the hydrogen bond strength. J. Phys. Chem. A, 105(47), 10739-10745, November 2001.
[323]  Lenain, P., Mandado, M., Mosquera, R. A., Bultinck, P. Interplay between hydrogen-bond formation and multicenter π-electron delocalization: Intramolecular hydrogen bonds. J. Phys. Chem. A, 112(42), 10689-10696, October 2008.
[324]  Grabowski, S. J. What is the covalency of hydrogen bonding? Chem. Rev., 111(4), 2597-2625, April 2011.
[325]  Jabłoński, M. Full vs. constrain geometry optimization in the open−closed method in estimating the energy of intramolecular charge-inverted hydrogen bonds. Chem. Phys., 376(1-3), 76-83, November 2010.
[326]  Deev, V., Collins, M. A. Approximate ab initio energies by systematic molecular fragmentation. J. Chem. Phys., 122(15), 154102:1-12, April 2005.
[327]  Deshmukh, M. M., Suresh, C. H., Gadre, S. R. Intramolecular hydrogen bond energy in polyhydroxy systems: A critical comparison of molecular tailoring and isodesmic approaches. J. Phys. Chem. A, 111(28), 6472-6480, June 2007.
[328]  Jabłoński, M., Monaco, G. Different zeroes of interaction energies as the cause of opposite results on the stabilizing nature of C−H···O intramolecular interaction. J. Chem. Inf. Model., 53(7), 1661-1675, June 2013.
[329]  Jabłoński, M. Energetic and geometrical evidence of nonbonding character of some intramolecular halogen···oxygen and other Y···Y interactions. J. Phys. Chem. A, 116(14), 3753-3764, April 2012.
[330]  Deshmukh, M. M., Bartolotti, L. J., Gadre, S. R. Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach. J. Phys. Chem. A, 112(2), 312-321, January 2008.
[331]  Nocker, M., Handschuh, S., Tautermann, C., Liedl, K. R. Theoretical Prediction of Hydrogen Bond Strength for Use in Molecular Modeling J. Chem. Inf. Model., 49(9), 2067-2076, September 2009.
[332]  Reynisson, J.; Steenken, S. DFT studies on the pairing abilities of the one-electron reduced or oxidized adenine-thymine base pair. Phys. Chem. Chem. Phys., 4(21), 5353-5358, June 2002.
[333]  Koch, W., Holthausen, M. C. Hydrogen Bonds and Weakly Bound Systems In A chemist’s guide to Density Functional Theory, 2nd ed; Wiley-VCH, Verlag GmbH, 2001, 217-236.
[334]  Guerra, C. F., Bickelhaupt, F. M., Snijders, J. G., Baerends, E. J. Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment. J. Am. Chem. Soc., 122(17), 4117-4128, May 2000.
[335]  Konè, M., Illien, B., Graton, J., Laurence, C. B3LYP and MP2 Calculations of the Enthalpies of Hydrogen-Bonded Complexes of Methanol with Neutral Bases and Anions: Comparison with Experimental Data. J. Phys. Chem. A, 109(51), 11907-11913, November 2005.
[336]  Garza, J., Ramírez, J.-Z., Vargas, R. Role of Hartree-Fock and Kohn-Sham Orbitals in the basis Set Superposition Error for Systems Linked by Hydrogen Bonds. J. Phys. Chem. A, 109(4), 643-651, January 2005.
[337]  Daza, M. C., Dobado, J. A., Molina-Molina, J., Salvador, P., Duran, M., Villaveces, J. L. Basis set superposition error-couterpoise corrected potential energy surfaces. Application to hydrogen peroxide---X (X=F-, Cl-, Br-, Li+, Na+) complexes. J. Chem. Phys., 110(24), 11807-11813, June 1999.
[338]  Smallwood, C. J., McAllister, M. A. Characterization of Low-Barrier Hydrogen Bonds. 7. Relationship between Strength and Geometry of Short-Strong Hydrogen Bonds. The Formic Acid-Formate Anion Model System. An ab initio and DFT Investigation. J. Am. Chem. Soc., 119(46), 11277-11281, November 1997.
[339]  Paton, R. S., Goodman, J. M. Hydrogen Bonding and π-Stacking: How Reliable are Force Fields? A Critical Evaluation of Force Field Descriptions of Nonbonded Interactions. J. Chem. Inf. Model., 49(4), 944-955, April 2009.
[340]  Ziegler, T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics. Chem. ReV., 91(5), 651-667, July 2001.
[341]  Senent, M. L.; Wilson, S. Intramolecular Basis Set Superpostition Errors. Int. J. Quantum Chem., 82(6), 282-292, June 2001.
[342]  Jensen, F. Basis Set Superposition Errors In Introduction to Computational Chemistry, 1st ed.; John Wiley & Sons: Chichester, England, 1999, 150-176.
[343]  Senent, M. L., Wilson, S. Accuracy of the Boys and Bernardi fuction counterpoise method. J. Chem. Phys., 98(6), 4728-4737, March 1993.
[344]  Cao, Y. “Application of linear free energy relationships in the prediction of triglyceride/water partition coefficients and lipid bilayer permeability coefficients of small organic molecules and peptides”. University of Kentucky Doctoral Dissertations. Paper 655, 2008
[345]  Pimentel, G. C., McClellan, A. L. The Hydrogen Bond, Freeman, San Francisco, 1960
[346]  Vinogradov, S. N., Linnell, R. H. Hydrogen Bonding, Van Nostrand Reinhold, New York, 1971.
[347]  Van de Waterbeemd, H., Camenisch, G., Folkers, G., Chretien, J. R., Raevsky, O. A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target., 6(2), 151-165, February 1998.
[348]  Norinder, U., Sjöberg, P., Österberg, T. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J. Pharm. Sci. 87(8), 952-959, August 1998.
[349]  Kelder, J., Grootenhuis P. D., Bayada, D. M., Delbressine, L. P., Ploemen, J. P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res., 16(10), 1514-1519, October 1999.
[350]  Crivori, P., Cruciani,G., Carrupt, P. A., Testa, B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem., 43(11), 2204-2216, June 2000.
[351]  Platts, J. A., Abraham, M. H., Zhaob, Y. H., Herseyc, A., Ijazb, L., Butina, D. Correlation and prediction of a large blood-brain distribution set - an LFER study. Eur. J. Med. Chem. 36(9), 719-730, September 2001.
[352]  Cronin, M. T. D., Dearden, J. C, Moss, G. P., Murray-Dickson, G. Investigation of the mechanism of flux across human skin in vitro in quantitative structure-permeability relationships. Eur. J. Pharm. Sci., 7(4), 325-330, May 1999.
[353]  Platts, J. A., Butina, D., Abraham, M. H., Hersey, A. Estimation of molecular linear free energy relation descriptors by a group contribution approach. J. Chem. Inf. Comput. Sci. 39(5), 835-845, July 1999.
[354]  Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., Savidge, T. C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv., 2(3), e1501240, March 2016.
[355]  Kenny, P. W., Montanari, C. A., Prokopczyk, I. M. ClogPalk: A method for predicting alkane/water partition coefficient. J. Comput. Aided Mol. Des., 27(5), 389-402, May 2013.
[356]  El Tayar, N., Tsai, R.-S., Testa, B., Carrupt, P.-A., Leo, A. Partitioning of solutes in different solvent systems: The contribution of hydrogen-bonding capacity and polarity. J. Pharm. Sci., 80(6), 590-598, September 1991.
[357]  Abraham, M. H., Chadha, H. S., Whiting, G. S., Mitchell, R. C. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the Δlog P parameter of seiler. J. Pharm. Sci., 83(8), 1085-1100, August 1994.
[358]  Toulmin, A., Wood, J. M., Kenny, P. W. Toward prediction of alkane/water partition coefficients. J. Med. Chem., 51(13), 3720-3730, July 2008.
[359]  Larson, J. W., McMahon, T. B. Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species(X, Y = F, Cl, Br, CN). Inorg. Chem., 23(14), 2029-2033, July 1984.
[360]  Chen, J. M., Xu, S. L., Wawrzak, Z., Basarab, G. S., Jordan, D. B. Structure-based design of potent inhibitors of scytalone dehydratase: Displacement of a water molecule from the active site. Biochemistry, 37(51), 17735-17744, December 1998.
[361]  Gerhard, U., Searle, M. S., Williams, D. H. The free energy change of restricting a bond rotation in the binding of peptide analogues to vancomycin group antibiotics. Bioorg. Med. Chem. Lett., 3(5), 803-808, May 1993.
[362]  Pluth, M. D., Bergman, R. G., Raymond, K. N. Acceleration of amide bond rotation by encapsulation in the hydrophobic interior of a water-soluble supramolecular assembly. J. Org. Chem. 73(18), 7132-7136, September 2008.
[363]  Green, N. M. Avidin and streptavidin. Methods Enzymol., 184, 51-67, 1990.
[364]  Reznik, G. O., Vajda, S., Sano, T., Cantor, C. R. A streptavidin mutant with altered ligand-binding specificity. Proc. Natl. Acad. Sci. U.S.A., 95(23), 13525-13530, November 1998.
[365]  Snyder, P. W., Mecinović, J.. Moustakas, D. T., Thomas, S. W. III, Harder, M., Mack, E. T., Lockett, M. R., Héroux, A., Sherman, W., Whitesides, G. M. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl. Acad. Sci. U.S.A., 108(44), 17889-17894, November 2011.
[366]  Steiner, T., Koellner, G. Hydrogen bonds with π-acceptors in proteins: Frequencies and role in stabilizing local 3D structures. J. Mol. Biol., 305(3), 535-557, January 2001.
[367]  Imai, Y. N., Inoue, Y., Yamamoto, Y. Propensities of polar and aromatic amino acids in noncanonical interactions: Nonbonded contacts analysis of protein-ligand complexes in crystal structures. J. Med. Chem., 50(6), 1189-1196, February 2007.
[368]  Bissantz, C., Kuhn, B., Stahl, M. A medicinal chemist’s guide to molecular interactions. J. Med. Chem, 53(14), 5061-5084, July 2010.
[369]  Pierce, A. C., Sandretto, K. L., Bemis, G. W. Kinase inhibitors and the case for CH…O hydrogen bonds in protein-ligand binding. Proteins, 49(4), 567-576, December 2002.
[370]  Salonen, L. M., Bucher, C., Banner, D. W., Haap, W., Mary, J.-L., Benz, J., Kuster, O., Seiler, P., Schweizer, W. B., Diederich, F. Cation-p interactions at the active site of factor Xa: Dramatic enhancement upon stepwise N-alkylation of ammonium ions. Angew. Chem. Int. Ed. Engl., 48(4), 811-814, January 2009.
[371]  Graton, J., Le Questel, J. Y. Maxwell, P., Popelier, P. Hydrogen-Bond Accepting Properties of New Heteroaromatic Ring Chemical Motifs: A] Theoretical Study. J. Chem. Inf. Model., 56(2), 322-334, February 2016.
[372]  Latimer, W. M.; Rodebush, W. H. Polarity and ionization from the standpoint of the Lewis theory of valence. J. Am. Chem. Soc., 42(7), 1419-1433, July 1920.
[373]  Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, New York, USA, 1997, 85, 228.
[374]  Williams, M. A.; Ladbury, J. E. Hydrogen bonds in protein-ligand complexes, in Protein-Ligand Interactions: From Molecular Recognition to Drug Design, Methods Princ. Med. Chem., 19, Böhm, H.-J., Schneider, G., Eds., Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim,. 2005, 137-161.
[375]  Persch, E., Dumele, O., Diederich, F. Molecular recognition in chemical and biological systems. Angew. Chem., Int. Ed., 54(11), 3290-3327, March 2015.
[376]  Etter, M. C. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res., 23(4), 120-126, April 1990.
[377]  Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem., Int. Ed. Engl., 34(15), 1555-1573, August 1995.
[378]  Karamertzanis, P. G., Day, G. M., Welch, G. W. A., Kendrick, J., Leusen, F. J. J., Neumann, M. A., Price, S. L. Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs. J. Chem. Phys., 128(4), 244708. June 2008.
[379]  Watson, J. D., Crick, F. H. C. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature (London, U. K.), 171(4356), 737-738, April 1953.
[380]  Franklin, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature (London, U. K.), 171(4356), 740-741, April 1953.
[381]  Pauling, L., Corey, R. B. Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. Natl. Acad. Sci. U. S. A., 37(11), 729-740, November 1951.
[382]  Baker, E. N.. Hubbard, R. E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol., 44(2), 97-179, September 1984.
[383]  McDonald, I. K., Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol., 238(5), 777-793, May 1994.
[384]  Dill, K. A., Ozkan, S. B., Shell, M. S., Weikl, T. R. The protein folding problem. Annu. Rev. Biophys., 37, 289-316, June 2008.
[385]  Fersht, A. R., Shi, J. P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y., Winter, G. Hydrogen bonding and biological specificity analyzed by protein engineering. Nature (London, U. K.), 314(6008), 235-238, March 1985.
[386]  Tanford, C. How protein chemists learned about the hydrophobic factor. Protein Sci., 6(6), 1358-1366, June 1997.
[387]  Southall, N. T., Dill, K. A., Haymet, A. D. J. A view of the hydrophobic effect. J. Phys. Chem. B, 106(3), 521-533, January 2002.
[388]  Leo, A., Hansch, C., Elkins, D. Partition coefficients and their uses. Chem. Rev., 71(6), 525-616, December 1971.
[389]  Dearden, J. C., Bresnen, G. M. The measurement of partition coefficients. Quant. Struct.-Act. Relat., 7(3), 133-144, July 1988.
[390]  Seiler, P. Interconversion of lipophilicities from hydrocarbon/water systems into the octanol/water system. Eur. J. Chem., 9(1), 473-479, January 1974.
[391]  Young, R. C., Mitchell, R. C., Brown, T. H., Ganellin, C. R., Griffiths, R., Jones, M., Rana, K. K., Saunders, D., Smith, I. R,, Sore, N. E., Wilks, T. J. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem., 31(3), 656-671, March 1988.
[392]  Leahy, D. E., Morris, J. J., Taylor, P. J., Wait, A. R. Model solvent systems for QSAR. Part 2. Fragment values (f-values) for the critical quartet. J. Chem. Soc., Perkin Trans. 2, 1992(4), 723-731, April 1992.
[393]  Dearden, J. C., Bresnen, G. M. Thermodynamics of water-octanol and water-cyclohexane partitioning of some aromatic compounds. Int. J. Mol. Sci., 6(1), 119-129, January-February 2005.
[394]  Laurence, C., Berthelot, M. Observations on the strength of hydrogen bonding. Perspect. Drug Discovery Des., 18(1), 39-60, June 2000.
[395]  Laurence, C., Brameld, K. A., Graton, J., Le Questel, J.-Y., Renault, E. The pKBHX database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J. Med. Chem., 52(14), 4073-4086, July 2009.
[396]  Graton, J., Berthelot, M., Gal, J.-F., Laurence, C., Lebreton, J., Le Questel, J.-Y., Maria, P.-C., Robins, R. The Nicotinic Pharmacophore: Thermodynamics of the hydrogen- bonding complexation of nicotine, nornicotine, and models. J. Org. Chem., 68(21), 8208-8221, November 2003.
[397]  Kenny, P. W. Hydrogen bonding, electrostatic potential and molecular design. J. Chem. Inf. Model., 49(5), 1234-1244, May 2009.
[398]  Kenny, P. W. Prediction of hydrogen bond basicity from computed molecular electrostatic properties: implications for comparative molecular field analysis. J. Chem. Soc., Perkin Trans. 2, 1994(2), 199-202, February 1994.
[399]  Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P., Lokey, R. S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am.Chem.Soc., 128(8), 2510-2511, March 2006.
[400]  Rafi, S. B., Hearn, B. R., Vedantham, P., Jacobson, M. P., Renslo, A. R. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem., 55(7), 3163-3169, April 2012.
[401]  D'Andrea, P., Mauro, S., Porcelloni, M., Rossi, C., Altamura, M., Catalioto, R.M., Giuliani, S., Maggi, C.A., Fattori, D. hNK2 receptor antagonists. The use of intramolecular hydrogen bonding to increase solubility and membrane permeability. Bioorg. & Med. Chem. Let. 2011, 21(6), 1807-1809, March 2011.
[402]  von Geldern, T. W., Hoffman, D. J., Kester, J. A., Nellans, H. N., Dayton, B. D., Calzadilla, S. V., Marsh, K. C., Hernandez, L., Chiou, W., Dixon, D. B., Wu-Wong, J. R., Opgenorth, T. J. Azole endothelin antagonists. 3. Using delta logP as a tool to improve absorption. J. Med. Chem., 39(4), 982-991, April 1996.
[403]  Carrupt, P.-A., Testa, B., Bechalany, A., El Tayar, N., Descas, P., Perrissoud, D. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J. Med. Chem., 34(4), 1272-1275, April 1991.
[404]  Guimarães, C. R. W., Mathiowetz, A. M., Shalaeva, M., Goetz, G., Liras, S. Use of 3D Properties to Characterize Beyond Rule-of-5 Property Space for Passive Permeation. J. Chem. Inf. Model., 52(4), 882-890, April 2012.
[405]  Wager, T. T., Hou, X., Verhoest P. R., Villalobos A. Moving beyond Rules: The Development of a Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment of Druglike Properties. ACS Chem. Neurosci., 1(6), 435-449, June 2010.
[406]  Abraham, M. H,; Acree, W. E. Jr, Leo, A. J., Hoekman, D., Cavanaugh, J. E. Water - Solvent Partition Coefficients and ΔLog P Values as Predictors for Blood - Brain Distribution; Application of the Akaike Information Criterion. J. Pharm. Sci., 99(5), 2492-2501, May 2010.
[407]  Liu, X., Testa, B., Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res., 28(5), 962-977, May 2011.
[408]  Grabowski, S. J. Hydrogen bonding strength-measures based on geometric and topological parameters. J. Phys. Org. Chem., 17(1), 18-31, January 2004.
[409]  Jeffrey, G. An Introduction to Hydrogen Bonding. Oxford University Press, New York, 1997, 218-219.
[410]  Goodwin, J., Conradi, R., Ho, N., Burton, P. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J. Med. Chem., 44(22), 3721-3729, November 2001.
[411]  Zissimos, A. M., Abraham, M. H., Barker, M. C., Box, K. J., Tam, K. Y. Calculation of Abraham descriptors from solvent-water partition coefficients in four different systems; evaluation of different methods of calculation. J. Chem. Soc., Perkin Trans. 2, 2002(3), 470-477, January 2002.
[412]  Avdeef, A. Physicochemical Profiling (Solubility, Permeability and Charge State). Curr. Top. Med. Chem., 1(4), 277-351, September 2001.
[413]  Steyaert, G., Lisa, G., Gaillard, P., Boss, G., Reymond, F., Girault, H., Carrupt, P.-A., Testa, B. Intermolecular Forces Expressed in 1,2-Dichloroethane/Water Partition Coefficients: A Solvatochromic Analysis. J. Chem. Soc., Faraday Trans., 93(3), 401-406, February 1997.
[414]  Novaroli, L., Bouchard, G., Caron, G., Fruttero, R., Carrupt, P. A., Testa, B. The lipophilicity behaviour of COMT inhibitors, CHIMIA. 2002, 56(7), 344-344, July 2002.
[415]  Caron, G., Ermondi, G. A comparison of calculated and experimental parameters as sources of structural information: the case of lipophilicity-related descriptors. Mini reviews in Med. Chem., 3(8), 821-830, December 2003.
[416]  Alkorta, I., Elguero, J. “Non- conventional Hydrogen Bonds”, Royal Society of Chemistry, Chemical Society Reviews, 27(2), 163-170, January 1998.
[417]  Minyaev, R. M., Minkin, V. I . Theoretical study of O ··X (S, Se, Te) coordination in organic compounds. Can. J. Chem., 76(6), 776-788, June 1998.
[418]  Esseffar, M. H., Herrero, R., Quintanilla, E., Dávalos, J. Z., Jiménez, P., Abboud, J.-L. M., Yáñez, M., Mó, O. Activation of the Disulfide Bond and Chalcogen-Chalcogen Interactions: An Experimental (FTICR) and Computational Study. Chem. Eur. J., 13(6), 1796-1803, March 2007. Corrected in Chem. Eur. J., 14(2), 417, January 2008
[419]  Sanchez-Sanz, G., Alkorta, I., Elguero, J. Theoretical study of the HXYH dimers (X,Y=O, S, Se). Hydrogen bonding and chalcogen-chalcogen interactions. Mol. Phys., 109(21), 2543-2552, November 2011.
[420]  Sánchez-Sanz, G., Trujillo, C., Alkorta, I., Elguero, J. Intermolecular Weak Interactions in HTeXH Dimers (X=O, S, Se, Te): Hydrogen Bonds, Chalcogen-Chalcogen Contacts and Chiral Discrimination. ChemPhysChem, 13(2), 496-503, February 2012.
[421]  Adhikari, U., Scheiner, S. Effects of Charge and Substituent on the S···N Chalcogen Bond. J. Phys. Chem. A, 118(17), 3183-3192, May 2014.
[422]  Alikhani, E., Fuster, F., Madebene, B., Grabowski, S. J. Topological reaction sites-very strong chalcogen bonds. Phys. Chem. Chem. Phys., 16(6), 2430-2442, February 2014.
[423]  Murray, J. S., Lane, P., Politzer, P. A predicted new type of directional noncovalent interaction. Int. J. Quantum Chem., 107(12), 2286-2292, June 2007.
[424]  Politzer, P., Murray, J., Concha, M. σ-hole bonding between like atoms; a fallacy of atomic charges. J. Mol. Model., 14(8), 659-665, August 2008.
[425]  Mohajeri, A., Pakiari, A. H., Bagheri, N. Theoretical studies on the nature of bonding in σ-hole complexes. Chem. Phys. Lett., 467(4-6), 393-397, January 2009.
[426]  Buckingham, A. D., Fowler, P. W. A model for the geometries of Van der Waals complexes. Can. J. Chem., 63(7), 2018-2025, July 1985.
[427]  Legon, A. C., Millen, D. J. Angular geometries and other properties of hydrogen-bonded dimers: A simple electrostatic interpretation of the success of the electron-pair model. Chem. Soc. Rev. 1987(16), 467-498, August 1987.
[428]  Stone, A. J., Price, S. L. Some new ideas in the theory of intermolecular forces: Anisotropic atom-atom potentials. J. Phys. Chem., 92(12), 3325-3335, June 1988.
[429]  Brinck, T., Murray, J. S., Politzer, P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int. J. Quantum Chem., 44(S19), 57-64, March 1992.
[430]  Burling, F. T., Goldstein, B. M. Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J. Am. Chem. Soc., 114(7), 2313-2320, March 1992.
[431]  Price, S. L. Applications of realistic electrostatic modelling to molecules in complexes, solids and proteins. J. Chem. Soc. Faraday Trans., 92(17), 2997-3008, September 1996.
[432]  Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. USA, 101(48), 16789-16794, November 2004.
[433]  Awwadi, F. F., Willett, R. D., Peterson, K. A., Twamley, B. The Nature of Halogen···Halogen Synthons: Crystallographic and Theoretical Studies. Chem. Eur. J., 12(35), 8952-8960, December 2006.
[434]  Politzer, P., Riley, K. E., Bulat, F. A., Murray, J. S. Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput. Theor. Chem., 998, 2-8, October 2012.
[435]  Hennemann, M., Murray, J., Politzer, P., Riley, K., Clark, T. Polarization-induced σ-holes and hydrogen bonding. J. Mol. Model., 18(6), 2461-2469, June 2012.
[436]  Clark, T. σ-Holes. WIREs Comput. Mol. Sci., 3(1), 13-20, January-February 2013.
[437]  Politzer, P., Murray, J. S. Halogen Bonding: An Interim Discussion. ChemPhysChem, 14(2), 278-294, February 2013.
[438]  Alkorta, I., Sanchez-Sanz, G., Elguero, J. Linear free energy relationships in halogen bonds. Cryst. Eng. Comm., 15(16), 3178-3186, April 2013.
[439]  Nagels, N., Geboes, Y., Pinter, B., De Proft, F., Herrebout, W. A. Tuning the Halogen/Hydrogen Bond Competition: A Spectroscopic and Conceptual DFT Study of Some Model Complexes Involving CHF2I. Chem. Eur. J., 20(27), 8433-8443, July 2014.
[440]  Lo, R., Fanfrlik, J., Lepsik, M., Hobza, P. The properties of substituted 3D-aromatic neutral carboranes: the potential for σ-hole bonding. Phys. Chem. Chem. Phys., 17(32), 20814-20821, August 2015.
[441]  Fanfrlík, J., Holub, J., Růžičková, Z., Rězáč, J., Lane, P. D., Wann, D. A., Hnyk, D., Růžičková, A., Hobza, P. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem, 17(21), 3373-3376, November 2016.
[442]  Bauza, A., Quinonero, D., Frontera, A., Deya, P. M. Substituent effects in halogen bonding complexes between aromatic donors and acceptors: A comprehensive ab initio study. Phys. Chem. Chem. Phys., 13(45), 20371-20379, December 2011.
[443]  Kolář, M. H., Hobza, P. Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem. Rev., 116(9), 5155-5187, May 2016.
[444]  Hobza, P., Rězáč, J. Introduction: Noncovalent Interactions. Chem. Rev., 116(9), 4911-4912, May 2016.
[445]  Zou, J.-W., Huang, M., Hua, G.-X., Jianga, Y.-J. Toward a uniform description of hydrogen bonds and halogen bonds: correlations of interaction energies with various geometric, electronic and topological parameters. RSC Adv., 7(17), 10295-10305, August 2017.
[446]  Sánchez-Sanz, G., Alkorta, I., Elguero, J. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds. Molecules, 22(2), 227.