American Journal of Modeling and Optimization
ISSN (Print): 2333-1143 ISSN (Online): 2333-1267 Website: http://www.sciepub.com/journal/ajmo Editor-in-chief: Dr Anil Kumar Gupta
Open Access
Journal Browser
Go
American Journal of Modeling and Optimization. 2016, 4(1), 13-18
DOI: 10.12691/ajmo-4-1-2
Open AccessArticle

An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer

El Hadji Oumar Gueye1, , Papa Douta Tall1, Cheikh Birahim Ndao1, Alle Dioum1, Abdoulaye Ndiaye Dione1 and Aboubaker Chedikh Beye1

1Groupe Laboratoire Physique du Solide et Sciences des Materiaux, Physics Department, Cheikh Anta Diop University, Dakar, Senegal

Pub. Date: March 09, 2016

Cite this paper:
El Hadji Oumar Gueye, Papa Douta Tall, Cheikh Birahim Ndao, Alle Dioum, Abdoulaye Ndiaye Dione and Aboubaker Chedikh Beye. An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer. American Journal of Modeling and Optimization. 2016; 4(1):13-18. doi: 10.12691/ajmo-4-1-2

Abstract

Dye sensitized solar cells (DSSC) are used for photovoltaic applications. The paper presents a methodology for optical and electrical modeling of dye-sensitized solar cells (DSSCs). In order to take into account the scattering process, the optical model is based on the determination of the effective permittivity of the mixture and the scattering coefficient using Mie and Bruggeman theories, considering spherical particles. Then, from the radiative transfer equation, the optical generation rate of cell is deduced. Coupling the output of the optical model (the dye generation rate) to an electrical model for charge generation, transport, and first-order (linear) recombination, allows determination of current density and maximum power output. Due to our model, the dependence effects of the thickness of the photoactive layer upon the optical generation rate, the short circuit photocurrent density and the maximum power output are evidenced. Moreover, we see that when the thickness of the photoactive layer increases the optical generation rate increases. While, the short circuit current density and the maximum power output increase until d =10 µm then remain constant. Thereby, it was found that 10 µm of thickness is enough for the best I-V characteristics. Our results agree with those found in the literature.

Keywords:
Dye sensitized solar cell Bruggeman Theory Mie Theory Radiatives Transfers Equations Mathematical Modeling Matlab Optical Generation Rate Maximum Power Output Thickness Solar Cell

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353-737, 1991.
 
[2]  Wang, Q., Ito, S., Gratzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H., “Characteristics of High Efficiency Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25210-25221, 2006.
 
[3]  Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Tavernelli, I., Rothlisberger, U., Nazeeruddin M.K., and Grätzel, M., “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers,” Nature Chemistry 6, 242-247, 2014.
 
[4]  Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D., “Solar cell efficiency tables (Version 45),” Progress in photovoltaics: research and applications, 23(1), 1-9, 2015.
 
[5]  Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., J. Appl. Phys., Part 2, 45, L638-L640, 2006.
 
[6]  Gao, F.; Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M., J. Am. Chem. Soc. 130, 10720-10728 ,2008.
 
[7]  Ferber, J., and Luther, J., “Computer simulations of light scattering and absorption in dye-sensitized solar cells.” Solar Energy Materials and Solar Cells 54 (1998).
 
[8]  Rothenberger, G., Comte, P., Gratzel, M., “A contribution to the optical design of dye_sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells, 58, 321-336, 1999.
 
[9]  Soedergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S. E., “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” The Journal of Physical Chemistry, 98(21), 5552-5556, 1994.
 
[10]  Matthews, D., Infelta, P., and Grätzel, M, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes.” Solar Energy Materials and Solar Cells, 44(2), 119-155, 1996.
 
[11]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[12]  Usami, A., “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters, 277(1), 105-108, 1997.
 
[13]  Usami, A., “Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes,” Chemical physics letters, 292(1), 223-228, 1998.
 
[14]  Ferber, J., Stangl, R., and Luther, J., “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 53(1), 29-54, 1998.
 
[15]  Stangl, R., Ferber, J., & Luther, J., “On the modeling of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells, 54(1), 255-264, 1998.
 
[16]  Usami, A., & Ozaki, H., “Computer simulations of charge transport in dye-sensitized nanocrystalline photovoltaic cells,” The Journal of Physical Chemistry B, 105(20), 4577-4583, 2001.
 
[17]  Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A., “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” The Journal of Physical Chemistry B, 108(24), 8106-8118, 2004.
 
[18]  Filipič, M., Berginc, M., Smole, F., & Topič, M., “Analysis of electron recombination in dye-sensitized solar cell,” Current Applied Physics, 12(1), 238-246, 2012.
 
[19]  Wenger, S., Schmid, M., Rothenberger, G., Gentsch, A., Gratzel, M., and Schumacher, J. O., “Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction,” J. Phys. Chem. C 115, 10218-10229, 2011.
 
[20]  Topič, M., Čampa, A., Filipič, M., Berginc, M., Krašovec, U. O., & Smole, F., “Optical and electrical modelling and characterization of dye-sensitized solar cells,” Current Applied Physics, 10(3), S425-S430, 2010.
 
[21]  Berthier, S., and Lafait, J., “Modelisation des Propriétés Optiques des Milieux Inhomogènes a Structures Complexe,” Journal de Physique Colloque CI, supplément au N°1, Tome 42, 1981.
 
[22]  Fredin, K., Nissfolk, J., Hagfeldt, A., “Brownian dynamics simulations of electrons and ions in mesoporous films,” Solar Energy Materials & Solar Cells 86, 283-297, 2005.
 
[23]  Lagemaat, J., Benkstein, K., Frank, A., “Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry B 105, 50, 2001.
 
[24]  Meng, N., Michael, K.H., Dennis, Y.C., Leung, K., “An analytical study of the porosity effect on dye-sensitized solar cell performance,” Solar Energy Materials & Solar Cells, 90, 1331-1344, 2006.
 
[25]  Taylor, S. W. “Transport of substrate and biomass in porous media with application to in situ bioremediation of organic contaminants in groundwater,” PhD thesis, Department of Civil Engineering, Princeton, 1990.
 
[26]  Taylor, N.J., Milly, S.W., and Jaffe, P. R., “Biofilm growth and the related changes in the physical properties of a porous medium, 2, Permeability,” Water Resour. Res., 26(9), 2161-2169, 1990.
 
[27]  Deb, A. K. “Theory of sand filtration.” J. Sanit. Eng. Div., ASCE, 96(3), 399-422. (1969).
 
[28]  C.F. Bohren, D.R. Huffman “Absorption and scattering of light by small particles,” Wiley, 1998.
 
[29]  Maheu, B., Letoulouzan, J.N., and Gouesbet, G., “Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters,” Applied Optics, 23 (19), 1984.
 
[30]  Rozé, C., Girasole, T., Gréhan, G., Gouesbet, G., Maheu, B., “Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters,” Optics communications 194 251-263, 2001.
 
[31]  Dioum, A, Ndiaye, S., Gueye, E.H.O., Gaye, M.B., Faye, D.N., Sakho, O., Faye, M., and Beye, A.C., “3-D Modeling of bilayer heterojunction organic solar cell based on Copper Phthalocyanine and Fullerene (CuPc/C60): evidence of total excitons dissociation at the donor-acceptor interface.” Global Journal of Pure and Applied Sciences,19, 2013.
 
[32]  Benkstein, K.D., Kopidakis, N., van de Lagemaat, J., Frank, A.J., “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” Phys. Chem. B, 107-114, 2003.
 
[33]  Barbe, C.J., Arendse, F., Comte, P., Jirousck, M., Lenzmann, F., Shklover, V., Gratzel, M., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” J. Am. Ceram. Soc, 80, 31-57, 1997.
 
[34]  Saito, Y., Kambe, S., Kitamura, T., Wada, Y., and Yanagida, S., “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, 83(1), 1-13, 2004.
 
[35]  Bisquert, J., and Marcus, R. A., “Device modeling of dye-sensitized solar cells. In: Multiscale Modelling of Organic and Hybrid Photovoltaics,” Springer Berlin Heidelberg, 325-395, 2013.
 
[36]  Park, N. G., Van de Lagemaat, J., and Frank, A. J., “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, 104(38), 8989-8994, 2000.
 
[37]  Huang, C. Y., Hsu, Y. C., Chen, J. G., Suryanarayanan, V., Lee, K. M., and Ho, K. C., “The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell,” Solar energy materials and solar cells, 90(15), 2391-2397, 2006.