American Journal of Modeling and Optimization
ISSN (Print): 2333-1143 ISSN (Online): 2333-1267 Website: http://www.sciepub.com/journal/ajmo Editor-in-chief: Dr Anil Kumar Gupta
Open Access
Journal Browser
Go
American Journal of Modeling and Optimization. 2019, 7(1), 20-28
DOI: 10.12691/ajmo-7-1-4
Open AccessArticle

Methodology of the Choice of Optimum Parameters of Technological Process on Experimental to Data

Yu. K. Mashunin1,

1Far Eastern Federal University, Vladivostok, Russia

Pub. Date: July 26, 2019

Cite this paper:
Yu. K. Mashunin. Methodology of the Choice of Optimum Parameters of Technological Process on Experimental to Data. American Journal of Modeling and Optimization. 2019; 7(1):20-28. doi: 10.12691/ajmo-7-1-4

Abstract

The article presents information modeling of the technological process based on vector optimization methods, which were developed in the author’s early works. As a test example, the technology “to predict and select the best welding parameters for hybrid laser arc welding (HLAW)” was used, “to predict and select the best welding parameters during the hybrid arc welding (HLAW)”, which was published in DOI:10.12691/ajmo-6-1-2. The mathematical model of the technological process is constructed as a vector problem of mathematical programming. In the model, criteria (characteristics of the technological process) are formed under certainty conditions (the functional dependence of each characteristic and restrictions on parameters is known) and in conditions of uncertainty (there is not enough information about the functional dependence of each characteristic on parameters). We formed a test case in which the initial parameters correspond to the parameters from DOI:10.12691/ajmo-6-1-2. The modeling methodology is shown in a numerical example of a technological process with two parameters and three characteristics. The constructed vector nonlinear programming problem is implemented in the MATLAB system.

Keywords:
modeling technological process vector optimization optimum decision-making the decision with a criterion priority

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Oluwasegun K.M., Ojo O.A, Ola O.T, Birur A., Cuddy J., and. Chan K, Development of Artificial Neural Network Models for Predicting Weld Output Parameters in Advanced Fusion Welding of a Magnesium Alloy. American Journal of Modeling and Optimization, vol. 6, no. 1 (2018): 18-34.
 
[2]  Mashunin Yu. K., Mashunin K. Yu.. Simulation and Optimal Decision Making the Design of Technical Systems // American Journal of Modeling and Optimization. 2015. Vol. 3. No 3, 56-67.
 
[3]  Mashunin Yu. K., Mashunin K. Yu.. Simulation and Optimal Decision Making the Design of Technical Systems (2. The Decision with a Criterion Priority) // American Journal of Modeling and Optimization. 2016. Vol. 4. No 2, 51-66.
 
[4]  Mashunin, Yu. K, Optimal designing in the interrelation Technical system – Materials (Theory) // Mathematical methods in engineering and technology: proceedings of international. Science. Conf.: 12 tons 4 /under General Ed. A. A. Bolshakova. –SPb.: Publishing house of Polytechnical Institute. Un-t, 2018. P. 40-46.
 
[5]  Mashunin Yu. K. Optimal design in relationship to the Technical system (TS) – Materials (Modeling TS) // Mathematical methods in technique and technologies: collection of works]. international. Science. Conf.: 12 tom 8 /under General Ed. A. A. Bolshakova. –SPb.: Polytechnic University Press, 2018. P. 15-20.
 
[6]  Mashunin, Yu. K, Methods and Models of Vector Optimization, Nauka, Moscow, 1986, 146 p. (in Russian).
 
[7]  Mashunin, Yu. K., and Levitskii, V. L., Methods of Vector Optimization in Analysis and Synthesis of Engineering Systems. Monograph. DVGAEU, Vladivostok, 1996. 131 p. (in Russian).
 
[8]  Mashunin K. Yu. , and Mashunin Yu. K. “Simulation Engineering Systems under Uncertainty and Optimal Descision Making”. Journal of Comput. Syst. Sci. Int. Vol. 52. No. 4. 2013. 519-534.
 
[9]  Yu. K. Mashunin. Vector optimization in the system optimal Decision Making the Design in economic and technical systems // International Journal of Emerging Trends & Technology in Computer Science. 2017. Vol. 7. No 1, 42-57
 
[10]  Yu. K. Mashunin. Concept of Technical Systems Optimum Designing (Mathematical and Organizational Statement)// International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017 Proceedings 8076394. Saint Petersburg. Russia/ WOS: 000414282400287 ISBN:978-1-5090-5648-4.
 
[11]  Yu. K. Mashunin. Optimum Designing of the Technical Systems Concept (Numerical Realization) // International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017 Proceedings 8076395. Saint Petersburg. Russia/ WOS: 000414282400288 ISBN:978-1-5090-5648-4.
 
[12]  Mashunin K. Yu., and Mashunin Yu. K. Vector Optimization with Equivalent and Priority Criteria. Journal of Comput. Syst. Sci. Int., 2017, Vol. 56. No. 6. pp. 975-996.
 
[13]  Torgashov A. Yu., Krivosheev V. P., Mashunin Yu. K., and Holland Ch. D., Calculation and multiobjective optimization of static modes of mass_exchange processes by the example of absorption in gas separation, Izv. Vyssh.Uchebn. Zaved., Neft’ Gaz, No. 3, 82-86. 2001.
 
[14]  Ketkov A. Yu., and Shul’ts M. M., MATLAB 6.x.: Numerical Programming. BKhV_Peterburg, St. Petersburg, 2004. 672 p. (in Russian).
 
[15]  Keeney, R. L. and Raiffa, H. Decisions with Multiple Objectives–Preferences and Value Tradeoffs (Wiley, New York, 1976; Radio i svyaz’, Moscow, 1981).