American Journal of Mining and Metallurgy
ISSN (Print): 2376-7952 ISSN (Online): 2376-7960 Website: http://www.sciepub.com/journal/ajmm Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Mining and Metallurgy. 2019, 5(1), 1-10
DOI: 10.12691/ajmm-5-1-1
Open AccessArticle

Examination of the Speciation of Trace Metals in Some Selected Areas of Jos, Nigeria

Temitope Emmanuel-Alonge1, Dare Victor Abere1, , Grace Modupe Oyatogun2, Dorcas Oluyemi Joseph1, Olumide Moses Ogunronbi1, Awe Olaniyi2, Ojoma Helen Adejo1, Florence Dennis Uzuh1 and Christopher Gambo1

1National Metallurgical Development Centre (NMDC), Jos, Nigeria

2Materials Science and Engineering Department, Obafemi Awolowo University, Ile-Ife, Nigeria

Pub. Date: November 13, 2019

Cite this paper:
Temitope Emmanuel-Alonge, Dare Victor Abere, Grace Modupe Oyatogun, Dorcas Oluyemi Joseph, Olumide Moses Ogunronbi, Awe Olaniyi, Ojoma Helen Adejo, Florence Dennis Uzuh and Christopher Gambo. Examination of the Speciation of Trace Metals in Some Selected Areas of Jos, Nigeria. American Journal of Mining and Metallurgy. 2019; 5(1):1-10. doi: 10.12691/ajmm-5-1-1

Abstract

Analysis of total metal concentrations and speciation of Lead (Pb), Zinc (Zn), Chromium (Cr), Manganese (Mn), Copper (Cu), and Iron (Fe) were carried out on soil samples from West of Mines, Tudun Wada and Dadin Kowa in Jos, Plateau state. Results show that zinc has the highest concentration of total metals while lead was not detected at all. Speciation results show an average of 4.47% of total metals in the exchangeable fraction, 9.95% in the carbonate fraction with chromium and copper not detected, 28.47% in the Fe-Mn oxides fraction with manganese being predominant, 8.44% in the organic fraction and 46.86% in the residual. The general pattern was that the bulk of the trace’s metals studied were present in the non-mobile, slightly or non-reactive, poorly or non-available forms.

Keywords:
concentration speciation metals organic lead chromium manganese

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Adriano DC. (2001). Trace Elements in Terrestrial Environments: Biogeochemistry Bioavailability and Risk of Metals. New York: Springer, pp 9-24.
 
[2]  Mielke HW, Gonzales CR, Smith MK, Mielke PW. (2009). The urban environment and children’s health: soil as an integrator of Lead, Zinc, and Cadmium in New Orleans, Louisiana, USA. Environ Res. Vol. 81, pp 117-129.
 
[3]  Tiller, K. G. (1999). Heavy metals in soil, their environmental significance. In B. A. Steward (Eds.), Advances in soil science Vol. 9. New York: Springer.
 
[4]  Mitchell, R. L. (1974). Trace element problems in Scottish soils. Netherlands Journal of Agricultural Science. Vol. 22, pp 7-33.
 
[5]  Chen, H. M., Zheng, C. R., Tu, C., & Zhu, Y. G. (2015). Heavy metal pollution in soils in China: Status and countermeasures. Ambio. Vol. 28, pp 130-134.
 
[6]  Kraemer, S. M., & Hering, J. G. (2004). Biogeochemical controls on the mobility and bioavailability of metals in soils and groundwater. Aquatic Sciences. Vol. 66, pp 1-2.
 
[7]  Lee, C. G., Chon, H. T., & Jung, M. C. (2001). Heavy metal pollution in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry. Vol. 16, pp 1693-1706.
 
[8]  Duffield, J. R. and Williams, D. R (1989). “Chemical Speciation”. Chem in Britain, pp 375-378.
 
[9]  Kabata-Pendias, A., & Pendias, H. (1992). Chapter 5 Trace elements in plants. In A. Kabata-Pendias, & H. Pendias (Eds.), Trace elements in soils and plants (pp. 67-87). Boca Raton: CRC Press.
 
[10]  Tessier. A., Campbell, P.G.C., & Bisson M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. Vol. 51, pp 844-851.
 
[11]  Perez-Santana, S., Pomares Alfonso, M., Villanueva Tagle, M., Pena Icart, M., Brunori, C., & Morabito, R. (2007). Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere. Vol. 66, pp 1545-1553.
 
[12]  Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., & Barberis, R. (2006). Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air and Soil Pollution. Vol. 173, pp 315-338.
 
[13]  Wong, S. C., Li, X. D., Zhang, G. Qi, S. H., & Min, Y. S. (2016). Heavy metals in agricultural soils of Pearl River Delta, South China. Environmental Pollution. Vol. 119, pp 33-44.
 
[14]  Santamaria-Fernandez, R., Moreda-Pineiro, A. and Hill, S. J.: (2002), ‘Optimization of a multielement sequential extraction method employing an experimental design approach for metal partitioning in soils and sediments’. J. Environ. Monit. Vol. 4, pp 330-336.
 
[15]  Haygarth, P. M., & Jones, K. C. (2012). Atmospheric deposition of metals to agricultural surfaces. In D. C. Adriano (Ed.), Biogeochemistry (pp. 249-276). Boca Raton: Lewis Publishers.
 
[16]  Cottenie, A., Camerlynk, R., Verloo, N and Dhaese (2010). Pure Appl. Chem. Vol. 52, pp 45-53.
 
[17]  Benhard, M.m Brinckman, F. E and Sadler, P. J. (eds) (2006). The importance of chemical “speciation” in environmental processes (springer-Verlag, Berlin) pp 762.
 
[18]  Bauer, H.; Christian, G.D.; and Reilly (1999). Instrumental Analysis, Allyn and Bacon Inc. Boston. Pp 262-263.
 
[19]  Kemdirin, E. C., Ejike, C. and Anadu, D. I. (2013). Seasonal variations in the trace elements contents of water and sediments of an upland reservoir in a mining district and lowland reservoir in a non-mining district of Plateau state, Nigeria. Nigerian journal of Biotechnology Vol. 6, 16-18.
 
[20]  Hall, G. E. E., Gauthier, G., Pelchat, J. C., Pelchat, P. and Vaive, J. 2016. Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. J. Spectrom. Vol 11, pp 787-796.
 
[21]  Abdel et al. (2014). Chemical characterization of heavy metal contaminated soil in south east Kansas. Water, Air and Soil Pollution, Vol. 78, pp 73-82.
 
[22]  Alexander, M. (2016). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environment Science & Technology. Vol 34, pp 4259-4264.
 
[23]  Burt, R., Wilson, M. A., Keck, T. J., Dougherty, B.D., Strom, D. E. and Lindahl, J. A.: (2013), ‘Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA’. Adv. Environ. Res. Vol. 8, pp 51-67.
 
[24]  Teruo Asami et al (2005). Distribution of differential fraction of Cd, Zn, Pb and Cu in unpolluted and polluted soils. Water, Air and Soil Pollution, Vol. 83, pp 1-4.