American Journal of Mechanical Engineering
ISSN (Print): 2328-4102 ISSN (Online): 2328-4110 Website: http://www.sciepub.com/journal/ajme Editor-in-chief: Kambiz Ebrahimi, Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Mechanical Engineering. 2017, 5(6), 316-320
DOI: 10.12691/ajme-5-6-17
Open AccessArticle

Precision Positioning with Mechanically Amplified Actuator

Michal Kelemen1, , Miroslav Pastor2, Ivan Virgala1 and Alexander Gmiterko1

1Department of Mechatronics, Technical University of Kosice, Faculty of Mechanical Engineering, Kosice, Slovak Republic

2Department of Applied Mechanics and Mechanical Engineering, Technical University of Kosice, Faculty of Mechanical Engineering, Kosice, Slovak Republic

Pub. Date: December 15, 2017

Cite this paper:
Michal Kelemen, Miroslav Pastor, Ivan Virgala and Alexander Gmiterko. Precision Positioning with Mechanically Amplified Actuator. American Journal of Mechanical Engineering. 2017; 5(6):316-320. doi: 10.12691/ajme-5-6-17

Abstract

Actuators like PZT or GMA have small stroke and high force at their output. There are several applications, where is necessary to enlarge small stroke. This paper deals with stroke amplifiers. Next part of paper shows the application of amplified actuators.

Keywords:
amplifier positioning actuator stroke force displacement

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  THORNLEY, J., KING, T., XU, W.: ‘Piezoceramic actuators for mechatronic applications’, Proc. of ICMA ’94 International conference on machine automation, mechatronics spells profitability, . Feb. 15-18, 1994.
 
[2]  JENDRITZA, D. J., JANOCHA, H., SCHMIDT, H., ‘Displacement amplifier for solid –state actuators’, Proc. of Int. Conf. on New Actuators – Actuators 96, Bremen, Germany, 26-28 June 1996.
 
[3]  TORRES, J., ASADA, H. H.: ‘High-Gain, High Transmissibility PZT Displacement Amplification Using a Rolling-Contact Buckling Mechanism and Preload Compensation Springs’, IEEE Transactions on Robotics, Vol. 30, No. 4, August 2014.
 
[4]  BURLEIGH INSTRUMENTS, Inc.: ‘The Power of Precision in Nanopositioning - Nanopositioning Systems’, USA, 1995.
 
[5]  HOSHI, N., KAWAMURA, A.: “Analysis of primary – on – slider type piezoelectric actuator and application to two degree of freedom plane actuator”, IEEE Transaction on industrial electronic., Vol. 43, No. 1, pp. 192-199. February 1996.
 
[6]  LIH, S.S., , COHEN J. B., ‘Rotary Ultrasonic Motors Actuated By Traveling Flexural Waves’, SPIE International Conference, Smart Structures and Materials Symposium, Enabling Technologies: Smart Structures and Integrated Systems, San Diego, CA, 3-6 March 1997. [online]. c2003, last revision not refered, cit. [2016-03-05]. http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/spie-usm97.htm.1997.
 
[7]  UCHINO, K., GINIEWICZ, J. R.: Mic-romechatronics. Marcel Dekker, Inc. 2003. New York, Basel. ISBN 0-8247-4109-9.
 
[8]  Jian Lia, Ramin Sedaghatia, Javad Dargahia, David Waechter, Design and development of a new piezoelectric linear Inchworm® actuator. Mechatronics, Volume 15, Issue 6, July 2005, P 651-681.
 
[9]  Jianping Lia, Hongwei Zhaoa, HanQua, Tao Cuia, Lu Fua, Hu Huanga, Luquan Renb, Zunqiang Fan, A piezoelectric-driven rotary actuator by means of inchworm motion. Sensors and Actuators A: Physical Volume 194, 1 May 2013, Pages 269-276.
 
[10]  François Barillot, Frank Claeyssen, Ronan Le Letty. Cedrat Technologies. Piezoactive actuator with dampened amplified movement. US Patent US 6927528 B2. http://www.google.com/patents/US6927528.
 
[11]  Tian-Bing Xu, Emilie J. Siochi, Lei Zuo, Xiaoning Jiang, Jin Ho Kang. Multistage Force Amplification of Piezoelectric Stacks. US Patent. US 20120119620 A1. http://www.google.com/patents/US20120119620.
 
[12]  D. Koniar, L. Hargaš and M. Hrianka, Application of standard DICOM in LabVIEW, Proc. of 7th conf. Trends in Biomedical Engineering, Kladno 11. – 13. 9. 2007 ISBN 978-80-01-03777-5. 2007.
 
[13]  A. Vitko, L. Jurišica, M. Kľúčik, R. Murár, F. Duchoň,: Embedding Intelligence Into a Mobile Robot. In: AT&P Journal Plus. ISSN 1336-5010. Č. 1 : Mobilné robotické systémy (2008), s. 42-44.
 
[14]  P. Božek, Robot path optimization for spot welding applications in automotive industry, Tehnicki vjesnik / Technical Gazette. Sep/Oct2013, Vol. 20 Issue 5, p913-917. 5p.
 
[15]  F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, L. Jurišica, Path planning with modified A star algorithm for a mobile robot, Procedia Engineering 96, 59-69.
 
[16]  P. Pásztó, P. Hubinský, Mobile robot navigation based on circle recognition, Journal of Electrical Engineering 64 (2), 84-91.
 
[17]  I. V. Abramov, Y. R. Nikitin, A. I. Abramov, E. V. Sosnovich, P. Božek, Control and Diagnostic Model of Brushless DC Motor, Journal of Electrical Engineering. Volume 65, Issue 5, P 277-282, 2014.
 
[18]  D. Koniar, L. Hargaš, S. Štofan, Segmentation of Motion Regions for Biomechanical Systems, Procedia Engineering, Volume 48, 2012, Pages 304-311.
 
[19]  Ľ. Miková, M. Kelemen, F. Trebuňa, I. Virgala, S. Medvecká-Beňová, experimental identification of piezo actuator characteristic. Metalurgija 54 (2015) 1, 221-223.
 
[20]  Fatikow, S. & Rembold. U., Microsystem Technology and Microrobotics. Berlin Heidelberg, Springer-Verlag, (1997).
 
[21]  M. Novotny, P. Ronkanen, “Piezoelectric Actuators”, [online]. Available: http://www.ac.tut.fi/aci/ courses/ACI-51106/pdf/Piezo/ PiezoelectricActuators.pdf
 
[22]  S. Yasuyoshi, T. Hisaaki, T. Toshihiko, N. Tatsuhiko, T. Kazumasa, H. Takahiko, N. Toshiatsu, N. Masaya, „Leadfree piezoceramics“ Nature (Nature Publishing Group) 432, (2004) 81-87.