American Journal of Mechanical Engineering
ISSN (Print): 2328-4102 ISSN (Online): 2328-4110 Website: http://www.sciepub.com/journal/ajme Editor-in-chief: Kambiz Ebrahimi, Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Mechanical Engineering. 2017, 5(3), 94-109
DOI: 10.12691/ajme-5-3-5
Open AccessArticle

Grey Relational Analysis of Chemical Assisted USM of Polycarbonate Bullet Proof (UL-752) & Acrylic Heat Resistant (BS-476) Glass

Kanwal Jeet Singh1, , Inderpreet Singh Ahuja2 and Jatinder Kapoor3

1Department of Mechanical Engineering, Giani Zail Singh Campus College of Engineering & Technology, Bathinda, Punjab, India

2Department of Mechanical Engineering, University College of Engineering, Punjabi University, Patiala, Punjab, India

3Department of Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India

Pub. Date: May 16, 2017

Cite this paper:
Kanwal Jeet Singh, Inderpreet Singh Ahuja and Jatinder Kapoor. Grey Relational Analysis of Chemical Assisted USM of Polycarbonate Bullet Proof (UL-752) & Acrylic Heat Resistant (BS-476) Glass. American Journal of Mechanical Engineering. 2017; 5(3):94-109. doi: 10.12691/ajme-5-3-5

Abstract

This paper is developed an innovative process of chemical assisted ultrasonic machining of polycarbonate bullet proof UL-752 and acrylic heat resistant BG-476 glass and conduct an investigation for optimize the machining parameters associated with multiple performance characteristics using Grey relational analysis. Machining of polycarbonate bullet proof UL-752 and acrylic heat resistant BS-476 glass are difficult process via conventional machining, however, it can be easily machined by Ultrasonic machining. Carefully selected parameters gives the optimum results. In this experimental work input parameters abrasive slurry concentration, type of abrasive, power rate, grit size of abrasive particles, hydro-fluoride acid concentration and tool material are selected. The effect of input parameters viz material removal rate, tool wear rate and surface roughness are investigate. Grey relational analysis and analysis of variance are performed to optimize the input parameters and better output results. In PBPG UL-752, increment in material removal rate by 75.58%, tool wear rate by 45.34% and surface roughness by 34.18%. In other hand, in AHRG BS-476, increment in material removal rate by 61.24%, tool wear rate by 31.46% and surface roughness by 23.85%. The surface topography is investigate through SEM images. It also observed that HF acid have the significant role in surface roughness. It also reduce the micro cracks on machined zone. Harder tool and harder abrasive slutty gives the higher material removal rate, but it also enhance the tool wear rate.

Keywords:
USM polycarbonate acrylic bullet proof heat resistant glass HF acid grey relational analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Kumar, J. (2013). Ultrasonic machining- a comprehensive review. Machining Science and Technology, 17(3), 325-379.
 
[2]  Azarhoushang, B.; Akbari, J. (2007). Ultrasonic assisted drilling of Inconel 738-LC. International Journal of Machine Tools and Manufacture, 47, 1027-1033.
 
[3]  Dvivedi, A.; Kumar, P. (2007). Surface quality evaluation in ultrasonic drilling through the taguchi technique. International Journal of Advanced Manufacturing Technology, 34(1-2), 131-140.
 
[4]  Gauri, S.K.; Chakravorty, R.; Chakraborty, S. (2011). Optimization of correlated multiple responses of ultrasonic machining (USM) process. International Journal of Advanced Manufacturing Technology, 53, 1115-1127.
 
[5]  Gilmore, R. (1991). Ultrasonic machining- a case study. Journal of Materials Processing Technology 28(1-2), 139-148.
 
[6]  Ghahramani, B.; Wang, Z.Y. (2001) Precision ultrasonic machining process: A case study of stress analysis of ceramic (Al2O3). International Journal of Machine Tools and Manufacture, 41(8), 1189-1208.
 
[7]  Goetze, D. (1956). Effect of vibration amplitude, frequency, and composition of the abrasive slurry on the rate of ultrasonic machining in ketos tool steel. Journal of Acoustical Society of America, 28(6), 1033-1045.
 
[8]  Kennedy, D.C.; Grieve R.J. (1975)/ Ultrasonic machining- a review. The Production Engineer, 54(9), 481-486.
 
[9]  Rao, R.V.; Pawar, P.J.; Davim, J.P. (2010). Parameter optimization of ultrasonic machining process using nontraditional optimization algorithms. Materials and Manufacturing Processes, 25(10), 1120-1130.
 
[10]  Nair, E.V.; Ghosh, A. (1985). A fundamental approach to the study of mechanics of ultrasonic machining. International Journal of Production Research, 23, 731-753.
 
[11]  Sahay, C.; Ghosh, S.; Kammila, H.K. (2011). Analysis of ultrasonic machining using monte carlo simulation. Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition, Denver: USA.
 
[12]  Thoe, T.B.; Aspinwall, D.K. (1999). Combined ultrasonic and electric discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology, 92-93, 323-328.
 
[13]  Wiercigroch, M.; Neilson, R.D.; Player, M.A. (1999). Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Physics Letters, 259, 91-96.
 
[14]  Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1998). Review on ultrasonic machining. International Journal of Machine Tools and Manufacture, 38(4), 239-255.
 
[15]  Guzzo, P.L.; Raslan, A.A.; DeMello, J.D.B. (2003). Ultrasonic abrasion of quartz crystals. Wear, 255, 67-77.
 
[16]  Komaraiah, M; Narasimha Reddy,P.N, (1993). A study on the influence of work-piece properties in ultrasonic machining, International Journal of Machine Tools and Manufacture, 33 (3), 495-505.
 
[17]  Choi, J.P.; Jeon, B.H.; Kim, B.H. (2007). Chemical-assisted ultrasonic machining of glass. Journal of Materials Processing Technology, 191, 153-156.
 
[18]  Morteza, A.S; Maohammad, N.R, (2014). Development of design & manufacturing support tool for optimization of ultrasonic machining (USM) and Rotary USM, Journal of Modern processes in manufacturing and production, 3 (2), 59-74.
 
[19]  Vinod, Y; Aniruddha, D. (2008). Design of horn for rotary ultrasonic machining using the finite element method, International journal of advanced manufacturing technology, 39 (1), 9-20.
 
[20]  H.Hong, T.Y. Hung, (1956). Advanced analysis of Nontraditional machining, Springer, pp. 325-339.
 
[21]  Soundararajan, V; Radhakrishnan, V. (1986). An experimental investigation on the basic mechanisms involved in ultrasonic machining, International Journal of Machine Tool Design and Research, 26 (3), 307-321.
 
[22]  Weller, E.J. (1984). Non-traditional Machining Processes, 2nd edition, American Society of tool & Manufacturing Engineers, pp. 15-71.
 
[23]  Guzzo, P.L.; Shinohara, A.H.; Raslan, A.A. (2004). A comparative study on ultrasonic machining of hard and brittle materials, Journal of the Brazilian Society of Mechanical Science & Engineering, 26 (1), 56-61.
 
[24]  M.A. Moreland, (1989). Ultrasonic Machining and Finishing, ASM Handbook, Ceramics and Glasses, 16, 359-362.
 
[25]  Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H., (1998). Review on ultrasonic machining, International journal of machine tools and manufacture, 38 (4), 239-255.
 
[26]  T.J. Drozda, C. Wick, (1983). Non-traditional machining, Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, Vol.1, Dearborn, MI, pp. 1-23.
 
[27]  Neppiras, E.A. (1972) Macrosonics in industry 1. Introduction, Ultrasonics, 10 (1), 9-13.
 
[28]  Seah, K.H.W.; Wong, Y.S. Lee, L.C. (1993). Design of tool holders for ultra-sonic machining using FEM, Journal of Material Processing Technology, 37 (1-4), 801-816.
 
[29]  Komaraiah, M.; Manan, M.A.;. Reddy, P. N.; Victor, S. (1988). Investigation of surface roughness and accuracy in ultrasonic machining, Precision Engineering, 10 (2), 59-65.
 
[30]  Neppiras, E.A. (1964). Ultrasonic machining and forming, Ultrasonics, 2 (4), 167-173.
 
[31]  Prewo, K.M.; Brennan, J.J. (1980). High Strength silicon carbide fiber-reinforced glass-matrix composites, Journal of material science, 15 (2), 463-468.
 
[32]  Thoe, T.B.; Aspinwall, D.K.; Wise, M.L.H. (1995). The effect of operating parameters when ultrasonic contour machining, in: Proceedings of the 12th Annual Conference of the Irish Manufacturing Committee (IMC-12), Cork, Ireland, September, pp. 305-312.
 
[33]  Adithan, M. (1974) Tool wear studies in ultrasonic drilling, Wear, 29, 81-93.
 
[34]  Kainth, G.S.; Nandy, A.; Singh, K. (1979). On the mechanics of material removal in ultrasonic machining, International Journal of Machine Toll Design And Research, 19 (1), 33-41.
 
[35]  Miller, G.E. (1957). Special Theory of Ultrasonic Machining, Journal of applied physics, 28 (2) 149-156.
 
[36]  Neppiras, E.A.; Foskett, R.D. (1957). Ultrasonic machining, Phillips Technical Review, 18 (11), 325-368.
 
[37]  Amin, S.G.; Ahmed, M.H.M.; Youssef, H.A. (1995). Computer aided design of acoustic horns for ultrasonic machining using finite element analysis, Journal of material processing technology, 55, 254-260.
 
[38]  Kremer, D. (1981). The state of the art of ultrasonic machining, Ann. CIRP, 30 (1), 107-110.
 
[39]  Khairy, A.B.E. (1990). Assessment of some dynamic parameters for the ultra-sonic machining process, Wear, 137, 187-198.
 
[40]  Singh, K.; Ahuja, I.P.S. (2014). Ultrasonic machining processes- review paper, International Journal for multi-disciplinary Engineering and Business Management, 2 (3) 57-66.
 
[41]  Singh, K.; Kumar, V. (2014). A Study on the Tool Geometry and Stresses Induced in Tool in Ultrasonic Machining Process Applied for the Tough and Brittle Materials, International Journal for multi-disciplinary Engineering and Business Management, 2014, 2 (3), 67-71.
 
[42]  Singh, K.; Kumar, V.S. (2014) “Finite Element Analysis of Ultrasonic Machine Tool”, International journal of engineering research and technology, 3 (7), 1647-1650.
 
[43]  Singh, K., Ahuja, I.P.S.; Kapoor. J. Study the effect of abrasive and hydrofluoric acid in ultrasonic machining of plain glass material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India.
 
[44]  Singh, K., Ahuja, I.P.S. and Kapoor. J. Ultrasonic machining of glass brittle material, In proceeding, National Conference Latest Development in Materials, Manufacturing and Quality Control, 19th-20th February, 2015, GZSCCET, BTI, India.
 
[45]  Singh, K., Ahuja, I.P.S. and Kapoor. J. Comparative study between conventional machining, chemical ultrasonic machining (CUSM) and ultrasonic machining (USM) of plain glass, polycarbonate, acrylic, bullet proof and heat resistant glass, In proceeding, International conference in latest development in materials, manufacturing and quality control, 12th -13th Feb-2016, GZSCCET BTI India.
 
[46]  Adithan, M. Tool wear characteristics in ultrasonic drilling, Tribology International, 1981, 14 (6), 351-356.
 
[47]  Goetze, D. (1956). Effect of vibration amplitude, frequency and composition of the abrasive slurry on the rate of ultrasonic machining in Ketos tool steel, Journal of acoustical society of America, 28 (6), 1033-1037.
 
[48]  Adithan, M. (1983). Abrasive wear in ultrasonic drilling, Tribology International, 16 (5), 253-255.
 
[49]  Adithan, M.; Venkatesh, V.C. (1974). Parameter influence on tool wear in ultra-sonic drilling, Tribolology International, 7 (6), 260-264.
 
[50]  Babitsky, V.I.; Astashev, V.K. (2007) Ultrasonic processes and machine, Springer Berlin Heidelberg New York.
 
[51]  Jain, N.K.; Jain, V.K. (2001) Modeling of material removal in mechanical type advanced machining processes: a state of art review, International journal of machine tools & manufacture, 41 (11) 1573-1635.
 
[52]  Jain, V., Sharma, A.K.; Kumar, P. (2012). Investigations on tool wear in micro Ultrasonic machining, Applied Mechanics and Material, Tranc Tech Publication Switzerland, pp.1561-1566.
 
[53]  I. Kaczmarek, (1976). Impact Grinding (Ultrasonic machining)--Book Chapter: 21 Principles of Machining by Cutting Abrasion and Erosion, Peter Peregrinus Ltd, Stevenage, pp. 448-462.
 
[54]  Dharmadhikari, S.W.; Sharma, C.S. (1985). Optimization of abrasive life in Ultrasonic Machining, Journal of Manufacturing Science & Engineering, 107 (4), 361-364.
 
[55]  Bekrenev, N.V.; Muldasheve, G.K.; Petrovskii, A.P. Tsvetkova, O.A. (2015). Influence of the thermal effect on the cutting forces in the ultrasonic machining of high strength material, Russian Engineering Research, 35 (10) pp. 758-759.
 
[56]  Chang, S.; Bone, G.M. (2005). Burr size reduction in drilling by ultrasonic assistance. Robotics and Computer-Integrated Manufacturing, 120, 442-450.
 
[57]  Fan, W.H.; Chao, C.L.; Chou, W.C.; Chen, T.T; Chao, C.W. (2009). Study on the Surface Integrity of Micro-Ultrasonic Machined Glass-Ceramic Material, Key Engineering Materials, 407-408, 731-734.
 
[58]  Kumar, J.; Khamba, J.S. (2009) An Investigation into the effect of work material properties, tool geometry and abrasive properties on performance indices of ultrasonic machining. International Journal of Machining and Machinability of Materials, 5(2/3): 347-365.
 
[59]  Schorderet,A. ; Deghilage, E.; Agbeviade, K. (2013) tool type and hole diameters influence in deep ultrasonic drilling of micro holes in glass, Procedia CIRP, 565-570.
 
[60]  Scholze, H. (1991) Glass – Nature, Structure, and Properties. Springer, Verlag, New York.
 
[61]  Phillips, J.C. (1979). Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, Journal of Non-Crystalline Solids 34 (2), pp.153-181.
 
[62]  Folmer , J. C. W., Franzen, S. (2003) Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory, Journal of Chemical Education , 80 (7), 813-818.
 
[63]  Phillips D.C, Sambell R.A.J, Bowen D.H. (1972) The mechanical properties of carbon fiber reinforced pyrex glass, Journal of Material Science, 7 (12), 1454-1464.
 
[64]  Dr Karl's Homework: Glass Flows Australia: ABC. 26 January 2000. Retrieved 24 October 2009.
 
[65]  Vogel, W.; Kreidl, N. (1985) Chemistry of Glass, Wiley.
 
[66]  Stookey, S.D.; Beall, G.H. (2000). Explorations in Glass: An Autobiography, Wiley.
 
[67]  Noel C. (1998). Stokes, The Glass and Glazing Handbook, Standards Association of Australia.
 
[68]  Kuo, K.L. (2007). Experimental investigation of brittle material milling using rotary ultrasonic machining. Proceedings of the 35th International MATADOR Conference, Springer: London, 195-198.
 
[69]  Hasani, H., Tabatabaei., S.A. & Amiri, G. (2012). Grey relational analysis to determine the optimum process parameters for open end sprnning yarns. Journal of engineering fibers and fabrics. 7 (2), 81-86.
 
[70]  Hasiao, Y.F., Tarng, Y.S. & Huang, W.J. (2008) Optimization of plasma are welding parameters by using the Taguchi method with the Grey relational analysis. Materials and manufacturing processes, 23, 51-58.
 
[71]  Lin, C.L., Lin, J.L. & Ko, T.C. (2002) Optimisation of EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. International journal of advanced manufacturing technology, 19, 271-277.
 
[72]  You, M.L., Shu, C.M., Chen, W.T., Shyu, M.L. (2017) Analysis of cardinal grey relational grade and grey entropy on achievement of air pollution reduction by evaluating air quality trend in Japan. Journal of cleaner production, 142 (4), 3883-3889.
 
[73]  Patil, P.J., Patil, C.R. (2016) Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade. Perspective in Science, 8, 367-369.
 
[74]  Ahmad, N., Kamal, S., Raza, Z.A. Hussain, T. (2016). Multi-response optimization in the development of oleo-hydrophobic cotton fabric using Taguchi based grey relational analysis. Applied surface science, 367, 370-381.
 
[75]  Lin, Y.H., Lee, P.C. & Chang, T.P. (2009) Practical expert diagnosis modal based on the grey relational analysis technique. Expert system with applications, 36, 1523-1528.
 
[76]  Lin, H.L. (2012) The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of intelligent manufacturing, 23(5), 1671-1680.
 
[77]  Manivannan, S., Prasanna, S. & Aramugam, R. (2011) Multi-objective optimization of flat plate heat sink using Taguchi based grey relational analysis. International journal of advanced manufacturing technology, 52, 739-749.
 
[78]  Meena, V.K., Azad, M.S. (2012). Grey relational analysis of micro EDM machining of Ti-6Al-4V alloy. Material and manufacturing processes 2012, 27, 973-977.
 
[79]  Singh, P.N., Raghukandan, K., Pai, B.C. (2004) Optimization by grey relational analysis of EDM parameters on machining Al-10%SiCp composites. Journal of material processing technology, 155-156, 1658-1661.
 
[80]  Sreenivasulu, R., Srinivasarao, C. (2012). Application of Grey relational analysis for surface roughness and roundness error in drilling of AL 6061 alloy. International journal of lean thinking, 3(2), 68-78.
 
[81]  Köklü, U. (2013). Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method. International Journal of Computer Integrated Manufacturing, 26(8), 696-702.
 
[82]  Karabatak Mustafa, Kara Fuat (2016). Experimental optimization of surface roughness in hard turning of AISI D2 cold work tool steel. Journal of Polytechnic, 19(3), 349-355.