[1] | Zhang, Q.M., Wang, P., Wang, W.J. and Zhang, Y.X., “Marine sand resources in the Pearl River estuary waters of China,” Journal of Marine Systems, 82, S83-S89, 2010. |
|
[2] | Dong, Z.Q., Wu, G. and Xu, Y.Q., “Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment,” Construction and Building Materials, 115, 277-284, 2016. |
|
[3] | Fu, Y.F., Gong, J., Yang, Z.M., Li, P.W., Li, S.D. and Lv, M.Z., “Reliability analysis of mechanical sand washing system,” in 2015 International Conference on Advances in Energy, Environment and Chemical Engineering, Atlantis Press, 533-536. |
|
[4] | Fu, Y.F., Gong, J., Peng, Z., Li, J.H., Li, S.D., Li, P.W. and Yang, Z.M., “Optimization design for screw wash-sand machine based on fruit fly optimization algorithm,” Journal of Applied Science and Engineering, 19 (2), 149-161, 2016. |
|
[5] | Yu, Y. and Arnold, P.C., “Theoretical modelling of torque requirements for single screw feeders,” Powder Technology, 93, 151-162, 1997. |
|
[6] | Tu, D.Y., Xu, A.H., Chen, X. and Hu, Y., “Force characteristics analysis and numerical simulation of biomass screw feeder in feeding process,” Journal of Machine Design, 32 (4), 81-86, 2015. |
|
[7] | Dai, J.J. and Grace, J.R., “A model for biomass screw feeding,” Powder Technology, 186, 40-55, 2008. |
|
[8] | Liu, S.J., Liu, C., Hu, Y.W., Gao, S.B., Wang, Y.F. and Zhang, H.C., “Fatigue life assessment of centrifugal compressor impeller based on FEA,” Engineering Failure Analysis, 60, 383-390, 2016. |
|
[9] | Kar, N.K., Roig, T., Kar, J.K. and Hu, Y.H., “Failure analysis of a Ti6Al4V screw used in a RASL procedure,” Journal of Failure Analysis and Prevention, 16, 482-488, 2016. |
|
[10] | Lee, Y.L., Pan, J., Hathaway, R.B. and Barkey, M.E., Fatigue testing and analysis theory and practice, Elsevier Butterworth-Heinemann, Oxford, 2005, 126-129. |
|
[11] | Zheng, X.L. and Wei, J.F., “On the prediction of P-S-N curves of 45 steel notched elements and probability distribution of fatigue life under variable amplitude loading from tensile properties,” International Journal of Fatigue, 27, 601-609, 2005. |
|
[12] | Cunha, S.B., Pasqualino, I.P. and Pinheiro, B.C., “Stress-life fatigue assessment of pipelines with plain dents,” Fatigue & Fracture of Engineering Materials & Structures, 32, 961-974, 2009. |
|
[13] | Alexopoulos, N.D., Migklis, E., Stylianos, A. and Myriounis, D.P., “Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading,” International Journal of Fatigue, 56, 95-105, 2013. |
|
[14] | Zhou, S., Sun, Y., Ge, J.R. and Chen, X.J., “Multiaxial fatigue life prediction of composite bolted joint under constant amplitude cycle loading,” Composites Part B, 74, 131-137, 2015. |
|
[15] | Klemenc, J., “Influence of fatigue-life data modelling on the estimated reliability of a structure subjected to a constant-amplitude loading,” Reliability Engineering and System Safety, 142, 238-247, 2015. |
|