[1] | Buehler, M. J., and Keten, S., 2008. “Elasticity, strength and resilience: a comparative study on mechanical signatures of a-helix, -sheet and tropocollagen domains”. Nano Research, 1, pp. 63-71. |
|
[2] | Kazerounian, K., 2004. “From mechanisms and robotics to protein conformation and drug design”. Journal of Mechanical Design, 126, pp. 40-45. |
|
[3] | Hu, X., Cebe, P., Weiss, A. S., Omenetto, F., and Kaplan, D. L., 2012. “Protein-based composite materials”. Materials Today, 15(5), pp. 208-215. |
|
[4] | Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E., 1997. “Reversible unfolding of individual titin immunoglobulin domains by afm”. Science, 276, p. 1109. |
|
[5] | Gabovich, A. M., and Li, M. S., 2009. “Mechanical stability of proteins”. Journal of Chemical Physics, 131, p. 024121. |
|
[6] | Lantz, M. A., Jarvis, S. P., Tokumoto, H., Martynski, T., Kusumi, T., Chikashi, N., and Miyake, J., 1999. “Stretching the a-helix: A direct measure of the hydrogen bond energy of a single peptide molecule”. Chemical Physics Letters, 315, pp. 61-68. |
|
[7] | Tskhovrebova, L., Trinick, K., Sleep, J., and Simmons, M., 1997. “Elasticity and unfolding of single molecules of the giant muscle protein titin”. Nature, 387, p. 308. |
|
[8] | Kellermayera, M. S. Z., Smithb, S. B., Bustamanteb, C., and Granzierc, H. L., 1998. “Complete unfolding of the titin molecule under external force”. Journal of Structural Biology, 122, pp. 197-205. |
|
[9] | Adamovic, I., Mijailovich, S. M., and Karplus, M., 2008. “The elastic properties of the structurally characterized myosin ii s2 subdomain: A molecular dynamics and normal mode analysis”. Biophysical Journal, 94, pp. 3779-3789. |
|
[10] | Buehler, M., and Keten, S., 2008. “Elasticity, strength and resilience: A comparative study on mechanical signatures of a helix, b-sheet and tropocollagen domains”. Nano Res, 1, pp. 63-71. |
|
[11] | Hamdia, M., Ferreiraa, A., Sharmab, G., and Mavroidis, C., 2008. “Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality”. Microelectronics Journal, 39, p. 190201. |
|
[12] | Poursina, M., Bhalerao, K. D., Anderson, K. S., Flores, S., and Laederach, A. “Strategies for articulated multibodybased adaptive coarse grain simulation of rna”. Methods in Enzymology, 487(31), pp. 73-98. |
|
[13] | Shahbazi, Z., 2011. “Role of hydrogen bonds in kinematic mobility and elasticity analysis of protein molecules”. PhD thesis, University of Connecticut. |
|
[14] | Kazerounian, K., and H., I., 2012. 21st Century Kinematics. Springer, ch. Protein Molecules: Evolution’s Design for Kinematic Machines, pp. 217-244. |
|
[15] | Kazerounian, K., Latif, K., and Alvarado, C., 2005. “Protofold: A successive kinetostatic compliance method for protein conformation prediction”. Journal of Mechanical Design, 127(4), pp. 712-717. |
|
[16] | Kazerounian, K., Latif, K., Rodriguez, K., and Alvarado, C., 2005. “Nano-kinematics for analysis of protein molecules”. Journal of Mechanical Design, 127(4), pp. 699-711. |
|
[17] | Subramanian, R., and Kazerounian, K., 2007. “Kinematic mobility analysis of peptide based nano-linkages”. Mechanism and Machine Theory, 42(8), pp. 903-918. |
|
[18] | Subramanian, R., and Kazerounian, K., 2007. “Improved molecular model of a peptide unit for proteins”. Journal of Mechanical Design, 129(11), pp. 1130-1136. |
|
[19] | Shahbazi, Z., Ilies, H., and Kazerounian, K., 2010. “Hydrogen bonds and kinematic mobility of protein molecules”. Journal of Mechanisms and Robotics, 2, pp. 021009-1,9. |
|
[20] | Shahbazi, Z., and Demirtas, A., 2015. “Rigidity analysis of protein molecules”. Journal of Computing and Information Science in Engineering. |
|
[21] | Z., S., F., P. T. A. P., H., I., K., K., and P., B., 2010. Advances in Robot Kinematics, Issue on Motion in Man and Machine. Springer, ch. A Kinematic Observation and Conjecture for Stable Construct of a Peptide Nanoparticle, pp. 203-210. |
|
[22] | Wales, T. E., and Fitzgerald, M. C., 2001. “The energetic contribution of backbone–backbone hydrogen bonds to the thermodynamic stability of a hyperstable p22 arc repressor mutant”. J Am Chem Soc, 123(31), pp. 7709-10. |
|
[23] | Dahiyat, B. I., Gordon, B., and Mayo, S. L., 1997. “automated design of the surface positions of protein helices”. Protein Science, 6, pp. 1333-1337. |
|
[24] | Jacobs, D., Rader, A. J., Kuhn, L. A., and Thorpe, M. F., 2001. “Protein flexibility predictions using graph theory”. Proteins: Structure, Function, and Genetics, 44(2), pp. 150-165. |
|
[25] | Baker, E. N., and Hubbard, R. E., 1984. “Hydrogen bonding in globular proteins”. Prog Biophys Mol Biol, 44(2), pp. 97-179. |
|
[26] | Artymiuk, P. J., and Blake, C. C., 1981. “Refinement of human lysozyme at 1.5 a resolution analysis of non-bonded and hydrogen-bond interactions”. J Mol Biol, 152(4), pp. 737-62. |
|
[27] | Xu, D., Tsai, C. J., and Nussinov, R., 1997. “Hydrogen bonds and salt bridges across protein-protein interfaces”. Protein Engineering, 10(9), pp. 999-1012. |
|
[28] | Brown, I. D., 2006. The chemical bond in inorganic chemistry: the bond valence model. Oxforf University Press. |
|
[29] | Mitchel, B. S., 2003. An introduction to materials engineering and science. John Wiley & Sons, INC. |
|
[30] | Arora, J. S., 2004. Introduction to optimum design. Elesevier Academic Press. |
|
[31] | Ashby, M., Shercliff, H., and Cebon, D., 2007. Materials: engineering, science, processing and design. Butterworth-Heinemann. |
|
[32] | Branden, C., and Tooze, J., 1999. Introduction to protein structure, second ed. Garland publishing. |
|
[33] | Ackbarow, T., Chen, X., Keten, S., and Buehler, M. J., 2007. “Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains”. Proc Natl Acad Sci U S A, 104(42), pp. 16410-5. |
|