[1] | R. G. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists. 1984. |
|
[2] | M. Horko, “CFD Optimisation of an Oscillating Water Column Wave Energy Converter,” M.Sc Thesis. Univ. West. Aust., pp. 1-159, 2007. |
|
[3] | S. T. Grilli and J. Horrillo, “Numerical generation and absorption of fully nonlinear periodic waves,” J. Eng. Mech., vol. 123, no. 10, pp. 1060-1069, 1997. |
|
[4] | D. B. Kothe, M. W. Williams, K. L. Lam, D. R. Korzekwa, P. K. Tubesing, and E. G. Puckett, “A second-order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-D unstructured meshes,” Proc. 1999 3rd ASME/JSME Jt. Fluids Eng. Conf. FEDSM’99, San Fr. California, USA, 18-23 July 1999, p. 1, 1999. |
|
[5] | J. C. Park, M. H. Kim, H. Miyata, and H. H. Chun, “Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3-D structures,” Ocean Eng., vol. 30, no. 15, pp. 1969-1996, 2003. |
|
[6] | V. R. Gopala and B. G. M. van Wachem, “Volume of fluid methods for immiscible-fluid and free-surface flows,” Chem. Eng. J., vol. 141, no. 1-3, pp. 204-221, 2008. |
|
[7] | J. Maljaars, R. J. Labeur, M. Möller, and W. Uijttewaal, “A Numerical Wave Tank Using a Hybrid Particle-mesh Approach,” Procedia Eng., vol. 175, pp. 21-28, 2017. |
|
[8] | Z. Sun, Y. Pang, and H. Li, “Two dimensional fully nonlinear numerical wave tank based on the BEM,” J. Mar. Sci. Appl., vol. 11, no. 4, pp. 437-446, 2012. |
|
[9] | B. Engquist and A. Majdat, “Absorbing Boundary,” Encycl. Comput. Neurosci., vol. 74, no. 5, pp. 125-125, 2015. |
|
[10] | Y. Gao, H. Song, J. Zhang, and Z. Yao, “Comparison of artificial absorbing boundaries for acoustic wave equation modelling,” Explor. Geophys., vol. 48, no. 1, pp. 76-93, 2017. |
|
[11] | S. F. Baudic, A. N. Williams, and A. Kareem, “A two dimensional numerical wave flume - Part 1: Nonlinear wave generation, propagation, and absorption,” J. Offshore Mech. Arct. Eng., vol. 123, no. 2, pp. 70-75, 2001. |
|
[12] | R. L. Higdon, “Radiation boundary conditions for elastic wave propagation,” SIAM J. Numer. Anal., vol. 27, no. 4, pp. 831-869, 1990. |
|
[13] | Y. L. Chen and S. C. Hsiao, “Generation of 3D water waves using mass source wavemaker applied to Navier-Stokes model,” Coast. Eng., vol. 109, pp. 76-95, 2016. |
|
[14] | M. Israeli and S. A. Orszag, “Approximation of radiation boundary conditions,” J. Comput. Phys., vol. 41, no. 1, pp. 115-135, 1981. |
|
[15] | S. Boo, “A Numerical Wave Tank For Nonlinear Irregular Waves By 3-D Higher Order Boundary Element Method,” no. August, 2016. |
|
[16] | T. Ohyama and K. Nadaoka, “Development of a numerical wave tank for analysis of nonlinear and irregular wave field,” Fluid Dyn. Res., vol. 8, no. 5-6, pp. 231-251, 1991. |
|
[17] | S. Y. Boo and K. N. Academy, “f f,” vol. 111, 1996. |
|
[18] | S. T. Grilli, S. Vogelmann, and P. Watts, “Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides,” Eng. Anal. Bound. Elem., vol. 26, no. 4, pp. 301-313, 2002. |
|
[19] | Z. Ma, T. Zhou, J. Sun, and G. Zhai, “Simulation on tsunami-like solitary wave run-up around a conical island using a modified mass source method,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 849-859, 2019. |
|
[20] | J. S. Zhang, Y. Zhang, D. S. Jeng, P. L. F. Liu, and C. Zhang, “Numerical simulation of wave-current interaction using a RANS solver,” Ocean Eng., vol. 75, pp. 157-164, 2014. |
|
[21] | J. L. Lara, N. Garcia, and I. J. Losada, “RANS modelling applied to random wave interaction with submerged permeable structures,” Coast. Eng., vol. 53, no. 5-6, pp. 395-417, 2006. |
|
[22] | H. L. Wu, S. C. Hsiao, W. Y. Hsu, R. Y. Yang, and H. H. Hwung, “Dynamic response of density-stratified fluid in a submarine rectangular trench,” J. Hydro-Environment Res., vol. 9, no. 1, pp. 61-80, 2015. |
|
[23] | K. Iwata, K. Kawasaki, and D. S. Kim, “Breaking limit, breaking and post-breaking wave deformation due to submerged structures,” Proc. Coast. Eng. Conf., vol. 2, pp. 2338-2351, 1997. |
|
[24] | X. Feng and W. Wu, “Generation of Water Waves Using Momentum Source Wave-Maker Applied to a RANS Solver,” Math. Probl. Eng., vol. 2019. |
|
[25] | J. C. Park, M. H. Kim, and H. Miyata, “Fully non-linear free-surface simulations by a 3D viscous numerical wave tank,” Int. J. Numer. Methods Fluids, vol. 29, no. 6, pp. 685-703, 1999. |
|
[26] | J. Bai, N. Ma, and X. Gu, “Numerical Simulation of Focused Wave and Its Uncertainty Analysis,” J. Shanghai Jiaotong Univ., vol. 23, no. 4, pp. 475-481, 2018. |
|
[27] | X. Hu, Y. Jiang, and D. Cai, “Numerical Modeling and Simulation of Wave Impact of a Circular Cylinder during the Submergence Process,” Model. Simul. Eng., vol. 2017, 2017. |
|
[28] | C. Jiang, X. Liu, Y. Yao, and B. Deng, “Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach,” Int. J. Nav. Archit. Ocean Eng., vol. 11, no. 1, pp. 530-541, 2019. |
|
[29] | A. Elhanafi, A. Fleming, Z. Leong, and G. Macfarlane, “Effect of RANS-based turbulence models on nonlinear wave generation in a two-phase numerical wave tank,” Prog. Comput. Fluid Dyn., vol. 17, no. 3, pp. 141-158, 2017. |
|
[30] | Z. Liu, B. S. Hyun, and K. Y. Hong, “Application of numerical wave tank to OWC air chamber for wave energy conversion,” Proc. Int. Offshore Polar Eng. Conf., vol. 8, pp. 350-356, 2008. |
|
[31] | M. Zabihi, S. Mazaheri, and A. R. Mazyak, “Wave Generation in a Numerical Wave Tank,” 17th Mar. Ind. Conf. 22-25 December2015 - Kish Isl., vol. 2017, no. 2, p. 11, 2015. |
|
[32] | A. Clément, “Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves,” J. Comput. Phys., vol. 126, no. 1, pp. 139-151, 1996. |
|
[33] | C. M. Dong and C. J. Huang, “On a 2-D numerical wave tank in viscous fluid,” Proc. Int. Offshore Polar Eng. Conf., vol. 3, pp. 148-155, 2001. |
|
[34] | J. T. Batina, “Using Unstructured Dynamic Meshes,” AIAA J., vol. 28, no. 8, pp. 1381-1388, 1990. |
|
[35] | J. F. Antaki, G. E. Blelloch, O. Ghattas, I. Malcevic, G. L. Miller, and N. J. Walkington, “a Parallel Dynamic-Mesh Lagrangian Method for Simulation of Flows With Dynamic Interfaces,” vol. 00, no. c, pp. 26-26, 2015. |
|
[36] | M. Hasan, A. Kabir, and Y. M. Akib, “Dynamic stall investigation of two-dimensional vertical axis wind turbine blades using computational fluid dynamics,” 8Th Bsme Int. Conf. Therm. Eng., vol. 2121, p. 120003, 2019. |
|
[37] | H. K. Esfeh, A. Azarafza, and M. K. A. Hamid, “On the computational fluid dynamics of PEM fuel cells (PEMFCs): An investigation on mesh independence analysis,” RSC Adv., vol. 7, no. 52, pp. 32893-32902. |
|
[38] | S. B. Sarkar, Santanu, “I Nternational J Ournal of,” Int. J. Energy Environ., vol. 4, no. 3, pp. 449-458, 2013. |
|
[39] | M. Anbarsooz, M. Passandideh-Fard, and M. Moghiman, “Fully nonlinear viscous wave generation in numerical wave tanks,” Ocean Eng., vol. 59, pp. 73-85. |
|
[40] | C. Windt, J. Davidson, and J. V. Ringwood, “High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks,” Renew. Sustain. Energy Rev., vol. 93, no. May, pp. 610-630, 2018. |
|
[41] | W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence,” Int. J. Heat Mass Transf., 1972. |
|
[42] | C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201-225, 1981. |
|