American Journal of Medical Case Reports
ISSN (Print): 2374-2151 ISSN (Online): 2374-216X Website: http://www.sciepub.com/journal/ajmcr Editor-in-chief: Samy, I. McFarlane
Open Access
Journal Browser
Go
American Journal of Medical Case Reports. 2018, 6(5), 92-98
DOI: 10.12691/ajmcr-6-5-5
Open AccessArticle

Evaluation of the Accuracy of Diffusion-weighted Imaging (DWI) in Differentiating Primary Brain Lymphoma (PBL) of Glial Tumors

Zahra Jan Amiri1, , Youssef Moghimi Boldaji2 and Ali Kiani Nazarlou3

1Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

3Department of Radiology, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

Pub. Date: June 19, 2018

Cite this paper:
Zahra Jan Amiri, Youssef Moghimi Boldaji and Ali Kiani Nazarlou. Evaluation of the Accuracy of Diffusion-weighted Imaging (DWI) in Differentiating Primary Brain Lymphoma (PBL) of Glial Tumors. American Journal of Medical Case Reports. 2018; 6(5):92-98. doi: 10.12691/ajmcr-6-5-5

Abstract

Introduction: Diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) map have an important role in the diagnosis and differentiation of brain tumors. Since the use of ADC for differing glioma of primary brain lymphoma (PBL) tumors is controversial and requires further investigation, the aim of this study was to use diffusion-weighted MRI for determining the ADC values of glial tumors and the relationship between glioma and PBL tumors. Methods: This cross-sectional retrospective study is carried out by reviewing documents, images, and ADC brain MRIs of 60 patients (26 males, 34 females) admitted to Shohada Hospital from 2006 to 2016 in Tehran after brain biopsy. The ADC values were measured in the tumor area from diffusion images of the brain with b-values of 0 and 1000 s/mm2. For data analysis, ANOVA and the Tukey post hoc test were used. Results: The ADC values of astrocytoma grade 2 were significantly greater than other grades of glioma and PBL tumor (P < 0.05). However, there were no statistically significant differences among the ADC values between anaplastic grade 2 and glioblastoma grade 4. In addition, the ADC values of the PBL were significantly lower than those of astrocytoma grade 2 (P < 0.05). Conclusions: The results of this study showed that the ADC values in the astrocytoma grade 2 were higher than the PBL. Thus, knowledge of the ADC values can be helpful in better diagnostics of astrocytoma and PBL cases and for future studies.

Keywords:
diffusion-weighted imaging apparent diffusion coefficient brain glioma primary brain lymphoma

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Walker, A.E., Robins, M., Weinfeld, F.D., "Epidemiology of brain tumors the national survey of intracranial neoplasms," Neurology, 35(2). 219. 1985.
 
[2]  Langleben, D.D., Segall, G.M., "PET in Differentiation of Recurrent Brain Tumor from Radiation Injury," Journal of Nuclear Medicine, 41(11). 1861-7. 2000.
 
[3]  Preston-Martin, S., "Epidemiology of primary CNS neoplasms," Neurologic clinics, 14(2). 273-90. 1996.
 
[4]  Davis, F.G., Kupelian, V., Freels, S., McCarthy, B., Surawicz, T., "Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups," Neuro-oncology, 3(3). 152-8. 2001.
 
[5]  Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.K., Wen, P.Y., Olson, J.J., "Exciting New Advances in Neuro©\Oncology: The Avenue to a Cure for Malignant Glioma," CA: a cancer journal for clinicians, 60(3). 166-93. 2010.
 
[6]  Paulus, W., "Classification, pathogenesis and molecular pathology of primary CNS lymphomas," Journal of neuro-oncology, 43(3). 203-8. 1999.
 
[7]  Torenbeek, R., Scheltens, P., van Schijindel, R.S., Algra, P., Heimans, J., Van Der Valk, P., "Angiotropic intravascular large-cell lymphoma with massive cerebral extension," Journal of Neurology, Neurosurgery & Psychiatry, 56(8). 914-6. 1993.
 
[8]  Herrlinger, U., Schabet, M., Bitzer, M., Petersen, D., Krauseneck, P., "Primary central nervous system lymphoma: from clinical presentation to diagnosis," Journal of neuro-oncology, 43(3). 219-26. 1999.
 
[9]  Braus, D.F., Schwechheimer, K., M¨¹ller-Hermelink, H.K., Schwarzkopf, G., Volk, B., Mundinger, F., "Primary cerebral malignant non-Hodgkin's lymphomas: a retrospective clinical study," Journal of neurology, 239(3). 117-24. 1992.
 
[10]  Camilleri-Broet, S., Davi, F., Feuillard, J., Seilhean, D., Michiels, J., Brousset, P., Epardeau, B., Navratil, E., Mokhtari, K., Bourgeois, C., Marelle, L., "AIDS-related primary brain lymphomas: histopathologic and immunohistochemical study of 51 cases," Human pathology, 28(3). 367-74. 1997.
 
[11]  Schabet, M., "Epidemiology of primary CNS lymphoma," Journal of neuro-oncology, 43(3). 199-201. 1999.
 
[12]  Sheibani, K., Battifora, H., Winberg, C.D., Burke, J.S., Ben-Ezra, J., Ellinger, G.M., Quigley, N.J., Fernandez, B.B., Morrow, D., Rappaport, H., "Further evidence that malignant angioendotheliomatosis is an angiotropic large-cell lymphoma," New England Journal of Medicine, 314(15). 943-8. 1986.
 
[13]  Morris, P.G., Abrey, L.E., "Therapeutic challenges in primary CNS lymphoma," The Lancet Neurology, 8(6). 581-92. 2009.
 
[14]  Haldorsen, I.S., Espeland, A., Larsen, J.L., Mella, O., "Diagnostic delay in primary central nervous system lymphoma," ActaOncologica, 44(7). 728-34. 2005.
 
[15]  Upadhyay, N., Waldman, A., "Conventional MRI evaluation of gliomas," The British journal of radiology, 84(special_issue_2). S107-11. 2011.
 
[16]  Koeller, K.K., Smirniotopoulos, J.G., Jones, R.V., "Primary central nervous system lymphoma: radiologic-pathologic correlation," Radiographics, 17(6). 1497-526. 1997.
 
[17]  Eichler, A.F., Batchelor, T.T., "Primary central nervous system lymphoma: presentation, diagnosis, and staging," Neurosurgical focus, 21(5). 1-9. 2006.
 
[18]  Haldorsen, I., Krakenes, J., Krossnes, B., Mella, O., Espeland, A., "CT and MR imaging features of primary central nervous system lymphoma in Norway, 1989-2003," American journal of neuroradiology, 30(4). 744-51. 2009.
 
[19]  Zhang, D., Hu, L.B., Henning, T.D., Ravarani, E.M., Zou, L.G., Feng, X.Y., Wang, W.X., Wen, L., "MRI findings of primary CNS lymphoma in 26 immunocompetent patients," Korean Journal of Radiology, 11(3). 269-77. 2010.
 
[20]  Yamasaki, F., Kurisu, K., Satoh, K., Arita, K., Sugiyama, K., Ohtaki, M., Takaba, J., Tominaga, A., Hanaya, R., Yoshioka, H., Hama, S., "Apparent Diffusion Coefficient of Human Brain Tumors at MR Imaging 1," Radiology, 235(3). 985-91. 2005.
 
[21]  Le Bihan, D., Turner, R., Douek, P., Patronas, N., "Diffusion MR imaging: clinical applications," American Journal of Roentgenology, 159(3). 591-9. 1992.
 
[22]  Filippi, C.G., Edgar, M.A., Ulug, A.M., Prowda, J.C., Heier, L.A., Zimmerman, R.D., "Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings," American journal of neuroradiology, 22(1). 65-72. 2001.
 
[23]  Stadnik, T.W., Chaskis, C., Michotte, A., Shabana, W.M., Van Rompaey, K., Luypaert, R., Budinsky, L., Jellus, V., Osteaux, M., "Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings," American journal of neuroradiology, 22(5). 969-76. 2001.
 
[24]  Roberts, J.D., "The Bloch equations. How to have fun calculating what happens in NMR experiments with a personal computer," Concepts in Magnetic Resonance, 3(1). 27-45. 1991.
 
[25]  Baumann, P.S., Cammoun, L., Conus, P., Do, K.Q., Marquet. P., Meskaldji, D., Meuli, R., Thiran, J.P., Hagmann, P., "High b-value diffusion-weighted imaging: a sensitive method to reveal white matter differences in schizophrenia," Psychiatry Research: Neuroimaging, 201(2). 144-51. 2012.
 
[26]  Colagrande, S., Belli, G., Politi, L.S., Mannelli, L., Pasquinelli, F., Villari, N., "The influence of diffusion-and relaxation-related factors on signal intensity: an introductive guide to magnetic resonance diffusion-weighted imaging studies," Journal of computer assisted tomography, 32(3). 463-74. 2008.
 
[27]  Koh, D.M., Collins, D.J., "Diffusion-weighted MRI in the body: applications and challenges in oncology," American Journal of Roentgenology, 188(6). 1622-35. 2007.
 
[28]  Koyama, T., Tamai, K., Togashi, K., "Current status of body MR imaging: fast MR imaging and diffusion-weighted imaging," International Journal of Clinical Oncology, 11(4). 278-85. 2006.
 
[29]  Dale, B.M., Braithwaite, A.C., Boll, D.T., Merkle, E.M., "Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen," Investigative radiology, 45(2). 104-8. 2010.
 
[30]  Guo, A.C., Cummings, T.J., Dash, R.C., Provenzale, J.M., "Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics 1," Radiology, 224(1). 177-83. 2002.
 
[31]  Kono, K., Inoue, Y., Nakayama, K., Shakudo, M., Morino, M., Ohata, K., Wakasa, K., Yamada, R., "The role of diffusion-weighted imaging in patients with brain tumors," American Journal of Neuroradiology, 22(6). 1081-8. 2001.
 
[32]  Gupta, R.K., Cloughesy, T.F., Sinha ,U., Garakian, J., Lazareff, J., Rubino, G., Rubino, L., Becker, D.P., Vinters, H.V., Alger, J.R., "Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma," Journal of neuro-oncology, 50(3). 215-26. 2000.
 
[33]  Niendorf, T., Dijkhuizen, R.M., Norris, D.G., van Lookeren Campagne, M., Nicolay, K., "Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging," Magnetic Resonance in Medicine, 36. 847-57. 1996.
 
[34]  Server, A., Kulle, B., Maehlen, J., Josefsen, R., Schellhorn, T., Kumar, T., Langberg, C.W., Nakstad, P.H., "Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema," Acta radiologica, 50(6). 682-9. 2009.
 
[35]  Ruhe, R.C., Curry, D.L., Herrmann, S., McDonald, R.B., "Age and gender effects on insulin secretion and glucose sensitivity of the endocrine pancreas," The American journal of physiology, 262(4 Pt 2). R671-6. 1992.
 
[36]  Kitis, O., Altay, H., Calli, C., Yunten, N., Akalin, T., Yurtseven, T., "Minimum apparent diffusion coefficients in the evaluation of brain tumors," European Journal of Radiology, 55. 393-400. 2005.
 
[37]  Maier, S.E., Bogner, P., Bajzik, G., Mamata, H., Mamata, Y., Repa, I., Jolesz, F.A., Mulkern, R.V., "Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging," Radiology, 219(3). 842-9. 2001.
 
[38]  Vargova, L., Homola, A., Zamecnik, J., Tichny, M., Benes, V., Sykova, E., "Diffusion parameters of the extracellular space in human gliomas," Glia, 42. 77-88. 2003.