American Journal of Medical Case Reports
ISSN (Print): 2374-2151 ISSN (Online): 2374-216X Website: http://www.sciepub.com/journal/ajmcr Editor-in-chief: Samy, I. McFarlane
Open Access
Journal Browser
Go
American Journal of Medical Case Reports. 2022, 10(1), 1-4
DOI: 10.12691/ajmcr-10-1-1
Open AccessCase Report

Bilateral Gluteal Abscess by MDR-Pseudomona Aeruginosa in a COVID-19 Patient: An Unusual Coinfection

Carlos Zavaleta Corvera1, , José Cabanillas Lopez1, Marisol Guibar2 and Liz Stephanie Muente-Alva3

1Department of Medicine, Alta Complejidad Virgen de la Puerta Hospital, Trujillo, 13013, Peru

2Department of Medicine, Belen Hospital, Trujillo, 13007, Peru

3Medical School, Antenor Orrego Private University, Trujillo, 13007, Perú

Pub. Date: November 10, 2021

Cite this paper:
Carlos Zavaleta Corvera, José Cabanillas Lopez, Marisol Guibar and Liz Stephanie Muente-Alva. Bilateral Gluteal Abscess by MDR-Pseudomona Aeruginosa in a COVID-19 Patient: An Unusual Coinfection. American Journal of Medical Case Reports. 2022; 10(1):1-4. doi: 10.12691/ajmcr-10-1-1

Abstract

An abscess is a collection of bacterial detritus inside of a tissue in the body that can create micro or macro communications with deeper regions if they are not treated on time. Some bacteria can produce necrotizing soft tissue infections that spreads rapidly through the subcutaneous tissue and fascia, producing rapid tissue necrosis. Situation may be more complicated in patients with multiple comorbidities. It reports the case of a young adult patient with insulin-dependent Diabetes Mellitus with poor metabolic control and a history of analgesics and corticosteroids injections in the gluteal region who was diagnosed with COVID-19 and then bilateral gluteal abscess with compromise of the fascia and the muscle in the first weeks of hospitalization.

Keywords:
COVID-19 SARS CoV2 necrotizing fasciitis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lidid, L, Casas JS. Absceso del iliopsoas: Claves para el diagnóstico imagenológico. Revista chilena de radiología, 2017; 23(4), 163-173.
 
[2]  Reyes NFL, Lombeyda GAF, Córdova LYH, Sánchez DGH. Absceso de psoas. RECIAMUC, 2021; 5(2), 57-63.
 
[3]  Hösl VM, Kehrer A, Prantl L. Die nekrotisierende Fasziitis – ein chirurgischer Notfall [Necrotizing fasciitis-a surgical emergency]. Unfallchirurg. 2020; 123(10): 807-815.
 
[4]  Rogers PJ, Lewis BM, Odak M, Bucher J. Spontaneous Necrotizing Fasciitis. Cureus. 2020; 12(12): 1-6.
 
[5]  Nguyen, L., Garcia, J., Gruenberg, K. et al. Multidrug-Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizont. Curr Infect Dis Rep. 2018. 20(8): 23.
 
[6]  Yadav R, Bulitta JB, Wang J, Nation RL, Landersdorfer CB. Evaluation of pharmacokinetic/pharmacodynamic model-based optimized combination regimens against multidrug-resistant Pseudomonas aeruginosa in a murine thigh infection model by using humanized dosing schemes. Antimicrob Agents Chemother. 2017; 61(12). 1-11.
 
[7]  Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019; 32(4): 19-31.
 
[8]  Benattar YD, Omar M, Zusman O, Yahav D, Zak-Doron Y, Altunin S, Elbaz M, Daitch V, Granot M, Leibovici L, Paul M. 2016. The effectiveness and safety of high-dose colistin: prospective cohort study. Clin Infect Dis 63: 1605-1612.
 
[9]  Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDS). Pharmacotherapy. 2019; 39(1):10-39.
 
[10]  Zusman O, Altunin S, Koppel F, Dishon Benattar Y, Gedik H, Paul M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother. 2017; 72(1): 29-39.
 
[11]  Khawcharoenporn T, Chuncharunee A, Maluangnon C, Taweesakul- vashra T, Tiamsak P. Active monotherapy and combination therapy for extensively drug-resistant Pseudomonas aeruginosa pneumonia. Int J Antimicrob Agents. 2018; 52(6): 828-834.
 
[12]  Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, et al. Updated US and European dose recommendations for intravenous colistin:how do they perform?.Clin Infect Dis. 2016; 19(6):413-418.
 
[13]  Yadav R, Bulitta JB, Nation RL, Landersdorfer CB. Optimization of synergistic combination regimens against carbapenem- and aminoglycoside-resistant clinical Pseudomonas aeruginosa isolates via mechanism-based pharmacokinetic/pharmacodynamic modeling. An- timicrob Agents Chemother. 2017; 61(1): 1-17.
 
[14]  Lim T-P, Wang R, Poh GQ, Koh T-H, Tan T-Y, Lee W, Teo JQ-M, Cai Y, Tan T-T, Ee PLR, Kwa AL. Integrated pharmacokinetic-pharmacodynamic modeling to evaluate empiric carbapenem therapy in bloodstream infections.Infect Drug Resist. 2018; 27(11): 1591-1596.
 
[15]  Sabuda DM, Laupland K, Pitout J, Dalton B, Rabin H, Louie T, Conly J. Utilization of colistin for treatment of multidrug-resistant Pseu- domonas aeruginosa. Can J Infect Dis Med Microbiol. 2008; 19(6): 413-418.
 
[16]  Brasseur A, Hites M, Roisin S, Cotton F, Vincent J-L, De Backer D, et al. A high-dose aminoglycoside regimen combined with renal replacement therapy for the treatment of MDR pathogens: a proof-of-concept study. J Antimicrob Chemother. 2016; 71(5): 1386-1394.
 
[17]  Layeux B, Taccone FS, Fagnoul D, Vincent JL, Jacobs F. Amikacin monotherapy for sepsis caused by panresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010; 54(11): 4939-4941.
 
[18]  Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME. 2012. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012; 31(5): 695-701.
 
[19]  Apisarnthanarak A, Mundy LM. Carbapenem-resistant Pseudomo- nas aeruginosa pneumonia with intermediate minimum inhibitory con-centrations to doripenem: combination therapy with high-dose, 4-h infusion of doripenem plus fosfomycin versus intravenous colistin plus fosfomycin. Int J Antimicrob Agents. 2012; 39(3): 271-272.
 
[20]  Asuphon O, Montakantikul P, Houngsaitong J, Kiratisin P, Sonthisombat P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (PK/PD) simulation. Int J Infect Dis. 2016; 50(x): 23-29.
 
[21]  Oliver WD, Heil EL, Gonzales JP, Mehrotra S, Robinett K, Saleeb P, Nicolau DP. Ceftolozane-tazobactam pharmacokinetics in a crit- ically ill patient on continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2016; 60(3): 1899-1901.
 
[22]  Stewart A, Roberts JA, Wallis SC, Allworth AM, Legg A, McCarthy KL. Evidence of clinical response and stability of ceftolozane/ tazobactam used to treat a carbapenem-resistant Pseudomonas aerugi- nosa lung abscess on an outpatient antimicrobial program. Int J Anti- microb Agents. 2018; 51(6): 941-942.
 
[23]  Sy SKB, Zhuang L, Sy S, Derendorf H. Clinical pharmacokinetics and pharmacodynamics of ceftazidime–avibactam combination: a model-informed strategy for its clinical development. Clin Pharmaco- kinet. 2018; 58(x): 545-564.
 
[24]  Li J, Lovern M, Green ML, Chiu J, Zhou D, Comisar C, et al. Ceftazidime-avibactam population pharmacokinetic modeling and pharmacodynamic target attainment across adult indications and patient subgroups. Clin Transl Sci. 2018; 12(2): 151-163.
 
[25]  Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan). 2021 Apr 25; 13(1): 5.