American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Medical and Biological Research. 2013, 1(4), 99-102
DOI: 10.12691/ajmbr-1-4-3
Open AccessArticle

Effect of Alcohol Consumption on Oxidative Stress Markers and its Role in the Pathogenesis and Progression of Liver Cirrhosis

Neelesh Deshpande1, Sabitha Kandi2, P Venkata Bharath Kumar3, K V Ramana4, and Manohar Muddeshwar1

1Department of Biochemistry, Government Medical college, Nagpur

2Department of Biochemistry, Chalmeda Anandarao Inastitute of Medical Sciences, Karimnagar

3Department of Biochemistry, Vaydehi Institute of Medical Sciences and research center, Bengaluru

4Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar

Pub. Date: October 11, 2013

Cite this paper:
Neelesh Deshpande, Sabitha Kandi, P Venkata Bharath Kumar, K V Ramana and Manohar Muddeshwar. Effect of Alcohol Consumption on Oxidative Stress Markers and its Role in the Pathogenesis and Progression of Liver Cirrhosis. American Journal of Medical and Biological Research. 2013; 1(4):99-102. doi: 10.12691/ajmbr-1-4-3


Oxidative stress has been increasingly implicated in the pathogenesis and progression of liver cirrhosis. Chronic ethanol consumption induces an oxidative stress resulting in increased ferritin levels and thereby iron over load. The study was aimed at evaluating the relation between alcohol consumption and erythrocyte superoxide dismutase (SOD), Glutathione peroxidase (GPx), Malondialdehyde (MDA) activities in liver cirrhosis patients. The study included two groups based on alcohol consumption; subjects taking low alcohol content (Less than 150 g/day.), those consuming high alcohol content (More than 150 g/day), diagnosed as suffering from liver cirrhosis and control group who do not take alcohol and are not suffering from liver cirrhosis. All cirrhotic patients on high alcohol intake in the study group had lower serum SOD (P < 0.0001), GPx (0.0001) and significantly higher MDA levels (P<0.001) than those with subjects taking low alcohol and control group. These results suggest that the decrease in erythrocyte SOD, GPx and increase in MDA levels are related to the alcohol consumption and that may be associated with pathogenesis and progression of liver disease.

liver cirrhosis alcohol consumption malondialdehyde superoxide dismutase Glutathione peroxidase

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Halliwell B., Gutteridge JMC., Cross CE. Free radicals, antioxidants, and human disease;Where are we now? J lab Clin Med. 1992; 598-620.
[2]  Savolainen, V. T., Liesto, K., Männikkö, A., Penttilä, A. and Karhunen, P. J., Alcohol Consumption and Alcoholic Liver Disease: Evidence of a Threshold Level of Effects of Ethanol. Alcoholism: Clinical and Experimental Research. 1993;17: 1112-1117.
[3]  Abou-Seif, M.Rabia, A. and Nasr Anti oxidant status. Erythrocyte membrane lipid peroxidation and osmotic fragility in malignant lymphoma patients. Clin. Chem. Lab Med. 2000; 38:737-42.
[4]  Khanzode S.S., Muddeshwar M.G., Khanzode S.D., and Dakhale G.N. 2004, Antioxidant enzymes and lipid peroxidation in different stages of breast cancer. Free Radical Res.2004; 38(1):81-85.
[5]  Liu, M.J., Auerbach,A.D., Anderson, S.M.,Gren, S.W. and Young, N.S. 1993. A trail of recombinant human superoxide dismutase in patients with Fanconi anaemia. Br. J. Hem., 85:406-8.
[6]  Sharma P., Mishra M., Ajmera P., and Mathur S. Oxidative stress in metabolic syndrome. Indian Journal of Clinical Biochemistry. 2005; 20(1), 145-149.
[7]  Agnieszka Szuster-ciesielska, Danlluk,J., Kandefer-Szerszen M. (2002) Oxidative stress in the blood of patients with alcohol-related liver.Med Sci Monit. 2002;8(6):CR419-424.
[8]  Dey A., Cederbaum A.I. Alcohol and oxidative liver Injury. 2006;43: S63-S74.
[9]  Ljubuncic, T., Tane, Z and Bomzon, A. 2000. Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut. 2000; 47:710-6.
[10]  Nalini, G., Hariprasad, C. and Naryanan, V.A.. Oxidative stress in alcoholic liver diseases. Indian.J. Med.Res.1999; 110:200-3.
[11]  Togashi, H., Shinzowa, H., Wakabayaski, H., Nakamura, T., Yamada, V., Takahashi, T. and Ishikawa, M.. Activities of free oxygen radical scavenger enzymes in human liver. J. Hepatol., 1999; 11:200-5.
[12]  Friedman, S.L. 1999. The cellular basis of hepatic fibrosis. Mechanism and treatment strategies. N. Engl.J.Med.. 1999,328:1828-35.
[13]  Svegliati-Baroni, G., Di Sario, A., Casini,A., Ferretti, G., D’ Ambrosio,L., Ridolfi, F.,Bolognini, L., Salzano,R., Orlandi,F.and Benedetti, A. The Na+/ H+ Exchanger modulates the Fibrogenic effect of oxidative stress in rat hepatic stelleate cells. J.Hepatol. 1999; 30:868-75.
[14]  Sukamato, H.C., Kim, W., Louz, Z., Horn, W. and sul, C. Role of lipid peroxidation in vitro and in vivo models of liver fibrogenenesis. Gastroenterology.1993, 104:1012.
[15]  Situnayake,RD., Crump,BJ., Thurnham,DI., Davies,JA., Gearty, J., Davis M. Lipid peroxidation and hepatic antioxidants in alcoholic liver disease. Gut, 1990, 31:1311-1317.
[16]  Bruce BR., Anthony ST, Gary MB., Park CH and Richard OR.Hepatic lipid peroxidation in vivo in rats with Chronic iron overload. J. Clin. Invest.. 1983,17:429-439.
[17]  Subir Kumar Das and D. M. Vasudevan. Monitoring oxidative stress in patients with non-alcoholic and alcoholic liver diseases. Indian J Clin Biochem. 2005 July; 20(2): 24-28.
[18]  Kasper DL, Fauci AS, Longo DL.,Braunwald E., Hauser SL., Jameson JL.Harrison’s Priciples of Internal Medicine 16th Edition.,2005,2:1813.
[19]  Woolliams JA, Wiener G, Anderson PH, McMurray CH.Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res Vet Sci. (1983); 34(3): 253-6.
[20]  Paglia, D.E. and Valentine, W.N. J. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Lab. Clin. Med.( 1967); 70:158-69.
[21]  Domninique General- Monnier, Irene Erdehneier,Jean Chandiere, Jean –Claude Yadan. Method of Colorimetric Analysis of Malondialdehyde and 4 Hydroxy -2-Enaldehydes as indices of lipid peroxidation: patent Number:5,726,063(1998).
[22]  Aisen P.(1980) Iron transport and storage Proteins. Ann. Rev. Biochem, 49:357-393.
[23]  Challand G.S. Mickaeldoudis A., Watfa R.R., Coles S.J., Macklin J.L.(1980), Distribution of haemoglobin in patients presenting to their general practitioner,and its correlation with serum ferritin. Ann. Clin. Biochem 27, 15-20.
[24]  Kimber R.J., Rusaki Z., Blunden R.W.( 1983) Iron deficiency and iron overload: Serum ferritin and serum iron in clinical medicine. Pathology, 15:497-503.
[25]  S.Bellentani,G Saccoccio, G costa, C Terribelli, F Manenti, M Sodde, L Saveria Croce’, F Sasso, G Pozzato, G Cristianini, G Brandi and the Dionysos study Group, Drinking habits as cofactors of risks for alcohol induced liver damage. (1997); Gut, 41:845-850.
[26]  B Lavik, C Holmegaard, U Becker, Drinking patterns and biochemical signs of alcoholic liver disease in Danish and Greenlandic patients with alcohol addiction, 2006: Int J Circumpolar Health,:65(3):219-227.
[27]  KrikunG., and Cederbaum A.I. Effect of chronic ethanol consumption on microsomal lipid peroxidation: Role of iron and comparision with controls.
[28]  Harrison-Findik DD. Role of alcohol in the regulation of iron metabolism.World J. Gastroenterol.2007, 13(37):4925-4930.
[29]  Clot P., Tabone M., Arico S., Albano E. Monitoring oxidative damage in patients with liver cirrhosis and different daily intake.Gut (1994);35:1637-1643.
[30]  Bhandari S., Mukul P. Agarwal, S. Dwivedi, B.. Banerjee D.,. (2008). Monitoring oxidative stress across worsening child pugh class of cirrhosis. Indian J Med Sci, 62(11):444-451.
[31]  Iqbal T.,Diad A., Ward DG., Brookes MJ., Tselepis C, Murray J, Elias E. (2009)Is Iron overload in alcohol-related cirrhosis mediated by Hepcidin? World J Gastroentrol, 15(46):5864-5866.