American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: http://www.sciepub.com/journal/ajmbr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Medical and Biological Research. 2015, 3(4), 102-106
DOI: 10.12691/ajmbr-3-4-4
Open AccessArticle

Impact of Simulated Microgravity on Nanoemulsion Stability – A Preliminary Research

Danielle Dantuma1, Rania Elmaddawi1, Yashwant Pathak1, Ana Grenha2, Rafaela de Oliveira3, Carla Paludo3 and Marlise A. dos Santos3,

1College of Pharmacy, University of South Florida, Tampa, USA

2IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Faculty of Sciences and Technology, University of Algarve, Faro, Portugal,

3Department of Pharmacy, Joan Verkinos Aerospace Laboratory, Microgravity Centre, PUCRS, Porto Alegre, Brazil

Pub. Date: June 03, 2015

Cite this paper:
Danielle Dantuma, Rania Elmaddawi, Yashwant Pathak, Ana Grenha, Rafaela de Oliveira, Carla Paludo and Marlise A. dos Santos. Impact of Simulated Microgravity on Nanoemulsion Stability – A Preliminary Research. American Journal of Medical and Biological Research. 2015; 3(4):102-106. doi: 10.12691/ajmbr-3-4-4

Abstract

Purpose: This project includes an analysis of nanoemulsions in microgravity simulation. Based on the understanding of these simulations, we can design and produce nanoemulsion drugs stable enough to go on the mission to space. Methods: Oil in water nanoemulsions were formulated using 30% oil and 70% water phase. A total of five nanoemulsions: control, carbamazepine, diclofenac sodium, fenofibrate, and melatonin were prepared via sonication method. The average viscosity of the emulsions was 33.3 ± 6.5 cP and the average pH was 6.27 ± 0.62. These nanoemulsions were characterized for particle size distribution and zeta potential before and after 1, 2, 3, 4, and 7 days in microgravity simulation by using a three-dimensional Clinostat. Results: Before microgravity simulation, the control, carbamazepine, diclofenac, fenofibrate, and melatonin had an average particle size of 254.1, 202.3, 909.3 221.1, and 226.9 nm, respectively. From day 1 to day 7 in microgravity simulation, the control, carbamazepine, diclofenac, fenofibrate and melatonin nanoemulsions decreased in particle size by 25.5, 4.4, 137.7, 7.9, and 0.6 nm, respectively. The zeta potential of all nanoemulsions were in the range of -64.3 to -68.0 mV, with exception of diclofenac. Conclusion: Throughout 7 days in microgravity simulation, all of the nanoemulsions remained stable and decreased in particle size. Future research must be done on the stability of nanoemulsions containing different drugs and evaluating the drug stability using High Performance Liquid Chromatography analytical method. It is also essential to simulate microgravity for a longer period of time in order to truly determine its effect on drug stability.

Keywords:
nanoemulsions simulated microgravity stability

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Fangueiro, J.F., Marques, I.R., Severino, P., Santana, M.H.A., Souto, E. B. “Desenvolvimento, produção e caracterização de nanocristais de fármacos pouco solúveis.” Química Nova, 35 (9). 1848-1853. 2012.
 
[2]  Mason, T.G., Wilking, J N., Meleson, K., Chang, C B., Graves, S M. “Nanoemulsions: formation, structure, and physical properties.” Journal of Physics: Condensed Matter, 18. 635-666. 2006.
 
[3]  Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J. “The big picture of nanomedicine: the state of investigational and approved nanomedicine products.” Nanomedicine: Nanotechnology, Biology, Medicine, 9. 1-14. 2013.
 
[4]  Ferrari, M. “Decoupling Diffusive Transport Phenomena in Microgravity.” Research Project, The University of Texas, Health Science, 37. 2014.
 
[5]  Liggieri, L., Ferrari, M., Passerone, A., Ravera, F., Loglio, G., Pandolfini, P., Steinchen, A., Antoni, M., Sanfeld, A., Miller, R., Fainerman, V., Grigoriev, D.O., Kovalchuk, V. I., Kragel, J., Makievski, A.V., Clausse, D., Komunjer, L., Gomez, F., Noik, C., Dalmazzone, C., di Lullo, A., del Gaudio, L., Leser, M.E., Michel, M. “Microgravity as a tool for studies on emulsion stability.” Microgravity applications programme: Successful teaming of science and industry, 5. 150-167. 2005.
 
[6]  Nickerson, C.T., Ott, C.M., Wilson, J.W., Ramamurthry, R., LeBlanc, C.L., Honer zu Bentrup, K., Hammond, T., Pierson, D.L. “Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis.” Journal of Microbiological Methods, 54. 1-11. 2003.
 
[7]  Walther, I., Pippia, P., Meloni, M.A., Turrini, F., Mannu, F., Cogoli, A. “Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes.” FEBS Letters. 436. 115-118. 1998.
 
[8]  Labflight. Microgravity Research Competition Flight to Space and $25,000 Grant. Background Information and Call for Proposals, http://www.labflight.com/Microgravity_Research_Competition_Announcement.pdf [Accessed December 30, 2014].
 
[9]  Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J. J.W.A., Hemmersbach, R. “Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology.” Astrobiology, 13 (1). 1-17. 2013.
 
[10]  Ahari, H., Bedard, R.L., Bowes, C.L., Coombs, N., Dag, O., Jiang, T., Ozin, G.A., Petrov, S., Sokolov, I., Verma, A., Vovk, G., Young, D. “Effect of microgravity on the crystallization of a self assembling layered material.” Nature. 388 (28). 856-860. August. 1997.
 
[11]  Oliveira, R., dos Santos, M. A. “Produção e Avaliação de Produtos Nanotecnológicos Submetidos à Simulação de Microgravidade.” Salão de Iniciação Científica, 14. 2013.
 
[12]  Bernardi, D.S., Pereira, T.A., Maciel, N.R., Bortoloto, J., Viera, G.S., Oliveira, G.C., Rocha-Filho, P.A. “Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments.” Journal of Nanobiotechnology. 9 (44). 1-9. 2011.
 
[13]  Baulin, V.A. “Self-assembled aggregates in the gravitational field: growth and nematic order.” The Journal of Chemical Physics, 119 (5). 2874-2885. 2003.
 
[14]  Caniato, R., Filippini, R., Piovan, A., Puricelli, L., Borsarini, A., Cappelletti, E. “Melatonin in plants.” Advances in Experimental Medicine and Biology. 527. 593-597. 2003.
 
[15]  Wang, J.Z., Wang, Z.F. “On the Role of Melatonin in Skin Physiology and Pathology.” Acta Pharmacologica Sinica, 27. 41-49. 2006.
 
[16]  Zhu, J., Li, M., Rogers, R., Meyer, W., Ottewill, R.H., Russel, C.W.B., Chaikin, P. M. “Crystallization of hard-sphere colloids in microgravity.” Nature, 387. 883-885. June.1997.
 
[17]  Galvão, W.G. “Carbamazepina no estado sólido e sua susceptibilidade polimórfica.” Dissertação de Mestrado. 67. 2009.
 
[18]  Kelmann, R G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. International Journal of Pharmaceutics 342. 231-239. 2007.
 
[19]  Shahnam, M., Roohafza, H., Sadeghi, M., Bahonar, A., Sarrafzadegan, N. “The correlation between lipid profile and stress levels in Central Iran: Isfahan Healthy Heart Program.” ARYA Atherosclerosis Journal, 6 (3). 102-106. 2010.
 
[20]  Drugs.com. Diclofenac Information, http://www.drugs.com/sfx/diclofenac-side-effects.html [Accessed December 30, 2014].
 
[21]  Rahn-Chique, K., Puertas, A.M., Romero-Cano, M.S., Rojas, C., Urbina-Villalba, G. “Nanoemulsion stability: Experimental evaluation of the flocculation rate from turbidity measurements.” Advances in Colloid and Interface Science, 178. 1-20. 2012.
 
[22]  Vanitasagar, S., Subhashini, N.J.P. “Novel Self-Nanoemulsion Drug Delivery System of Fenofibrate with Improved Bio-Availability.” International Journal of Pharma and Bio Sciences, 4 (2). 511-521. April. 2013.
 
[23]  Schaffazick, S.R., Pohlmann, A.R., Guterres, S.S. “Nanocapsules, nanoemulsion and nanodispersion containing melatonin: preparation, characterization and stability evaluation.” Pharmazie, 62 (5). 354-360. 2007.