American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: http://www.sciepub.com/journal/ajmbr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Medical and Biological Research. 2015, 3(1), 38-47
DOI: 10.12691/ajmbr-3-1-3
Open AccessArticle

Comparative Study of Some Potential Paracrine Factors Produced by Normal and Androgenetic Alopecia Hair Follicles

Saeed A. Alwaleedi1,

1Biology Department, Faculty of Science, Taif University (TU), Taif, Saudi Arabia

Pub. Date: February 26, 2015

Cite this paper:
Saeed A. Alwaleedi. Comparative Study of Some Potential Paracrine Factors Produced by Normal and Androgenetic Alopecia Hair Follicles. American Journal of Medical and Biological Research. 2015; 3(1):38-47. doi: 10.12691/ajmbr-3-1-3

Abstract

Androgens are the main regulators of human hair growth. Paradoxically, androgens can convert small vellus hair follicles to long terminal ones as seen during growth of beard and in hirsutism, however they also can stimulate the gradual transformation of large terminal scalp follicles to tiny vellus ones causing androgenetic alopecia in individuals with a genetic predisposition. Hair disorders are poorly controlled and may cause psychological distress and reduction in the quality of life. The molecular mechanisms of androgen action in human hair follicles are not fully understood. However it is believed that androgens exert their effects on hair follicles via the dermal papilla cells by altering the regulatory paracrine factors produced by the dermal papilla itself and affect the other follicular components. The study aimed to identify key paracrine factors which involved in androgen-regulated alopecia. Balding and non-balding scalp hair follicles isolated and analyzed by molecular biological methods, DNA microarray and quantitative real-time PCR. Comparing balding and non-balding follicles from the same individuals revealed the expected reduction in several keratin and keratin-related protein genes supporting this approach’s validity. There were also significant differences in paracrine factors previously implicated in androgen action by in vitro studies. Several factors believed to increase during androgen stimulation of larger, darker follicles, e.g. IGF-I and SCF, and VEGV were lowered in balding follicles, while putative inhibitory factors, e.g. TGFß-1, IL-1β, IL-1α, and IL-6 were increased. These findings increase our understanding of androgen action in human hair follicles; this could lead to better treatments for hair disorders.

Keywords:
hair follicles androgen androgenetic alopecia PCR microarray

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Thomas, J. (2005). Androgenetic alopecia-Current status. Indian J Dermatol 50, 179-90.
 
[2]  Messenger, A. G., and Sinclair, R. (2006). Follicular miniaturization in female pattern hair loss: clinicopathological correlations. Br J Dermatol 155, 926-930.
 
[3]  Randall, V. A. (2005). Physiology and pathophysiology of androgenetic alopecia, In Endocrinology, L. J. Degroot, and Jameson, J.L., ed. (Philadelphia: W B Saunders Co.), pp. 3295-3309.
 
[4]  Randall, V. A. (2007). Hormonal regulation of hair follicles exhibits a biological paradox. Semin Cell Dev Biol 18, 274-85.
 
[5]  Courtois, M., Loussouarn, G., Hourseau, C., Grollier J. F. (1994). Hair cycle and alopecia. Skin Pharmacol 7, 84-9.
 
[6]  Hamilton, J. B. (1960). Effect of castration in adolescent and young adult males upon further changes in the proportions of bare and hairy scalp. J Clin Endocrinol Metab 20, 1309-1318.
 
[7]  Hamilton, J. B. (1942). Male hormone stimulation is a prerequisite and an incitant in common baldness. Am J Anat 71, 451-481.
 
[8]  McPhaul, M. J. (2004). Androgen receptors and androgen insensitivity syndromes, In Endocrinology, L. J. Degroot, and Jameson, J.L., ed. (Philadelphia: W B Saunders Co).
 
[9]  Phillipou, G., and Kirk, J. (1981). Significance of steroid measurements in male pattern alopecia. Clin Exp Dermatol 6, 53-56.
 
[10]  Pitts, R. L. (1987). Serum elevation of dehydroepiandrosterone sulfate associated with male pattern baldness in young men. J Am Acad Dermatol 16, 571-573.
 
[11]  Birch, M. P., and Messenger, A. G. (2001). Genetic factors predispose to balding and non-balding in men. Eur J Dermatol 11, 309-314.
 
[12]  Nyholt, D. R., Gillespie, N. A., Heath, A. C., and Martin, N. G. (2003). Genetic Basis of Male Pattern Baldness. J Invest Dermatol 121, 1561-1564.
 
[13]  Bergfeld, W. F. (1955). Androgenetic alopecia: An autosomal dominant disorder. Am J Med 98, 955-985.
 
[14]  Ellis, J. A., and Harrap, S. B. (2001). The genetics of androgenetic alopecia. Clin Dermatol 19, 149-154.
 
[15]  Prodi, D. A., Pirastu, N., Maninchedda, G., Sassu, A., Picciau, A., Palmas, M. A., Mossa, A., Persico, I., Adamo, M., Angius, A., and Pirastu, M. (2008). EDA2R is associated with androgenetic alopecia. J Invest Dermatol 128, 2268-2270.
 
[16]  Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S., Steffens, M., Flaquer, A., Herms, S., Becker, T., Kortum, A. K., and Nyholt, D. R. (2008). Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet 40, 1279-1281.
 
[17]  Richards, J. B., Yuan, X., Geller, F., Waterworth, D., Bataille, V., Glass, D., Song, K., Waeber, G., Vollenweider, P., Aben, K. K., et al. (2008). Male-pattern baldness susceptibility locus at 20p11. Nat Genet 40, 1282-1284.
 
[18]  Randall, V. A. (1994). Androgens and human hair growth. Clin Endocrinol (Oxf) 40, 439-457.
 
[19]  Randall, V. A. (2008). Androgens and hair growth. Dermatol Ther 21, 314-328.
 
[20]  Blume-Peytavi, U., and Mandt, N. (2000). Signalling molecules in human hair follicle cell populations, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 103-113.
 
[21]  Paus, R. (2000). Control of the hair follicle growth cycle, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 83-94.
 
[22]  Philpott, M. (2000). The roles of growth factors in hair follicles: investigations using cultured hair follicles, In Hair and its disorders: biology, pathology and management, F. M. Camacho, Randall, V.A., and Price, V.H., ed. (Martin Dunitz, London), pp. 103-113.
 
[23]  Hamilton, J. B. (1951). Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci 53, 708-728.
 
[24]  Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, J., Scherf, U., SPEED, T. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264.
 
[25]  Komura, D., Nakamura, H., Tsutsumi, S., Aburatani, H., and Ihara, S. (2005). Multidimensional support vector machines for visualizing of gene expression data. Bioinformatics 21, 439-444.
 
[26]  Shlens, J. (2009). A tutorial on principal component analysis. Centre for Neural Science, Salk Institute for Biological Studies. New York University, version 3, pp 1-12.
 
[27]  Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and ∆∆Ct method. Methods 25, 402-408.
 
[28]  Skrypina, N. A., Timofeeva, A. V., Khaspekov, G. L., Savochkina, L. P., and Beabealashvilli, R. S. (2003). Total RNA suitable for molecular biology analysis. J Biotech 105, 1-9.
 
[29]  Smyth, G. K., and Speed, T. P. (2003). Normalization of cDNA microarray data. Methods 31, 265-273.
 
[30]  Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics Supplement 32, 496-501.
 
[31]  Lee, E., and Park, T. (2007). Exploratory methods for checking qualityof microarray data. Bioinformation, Biomed informatics publishing group, 1, 423-428.
 
[32]  Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95, 14863-14868.
 
[33]  Cui, X., and Churchill, G. A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 4, 210.
 
[34]  Jahoda, C. A., Oliver, R. F., Reynolds, A. J., Forrester, J. C., Gillespie, J. W., Cserhalmi-Friedman, P. B., Christiano, A. M., and Horne, K. A. (2001). Trans-species hair growth induction by human hair follicle dermal papillae. Exp Dermatol 110, 229-237.
 
[35]  Randall, V. A., Jenner, T. J., Hibberts, N. A., De Oliveira, I. O., and Vafaee, T. (2008). Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles. J Endocrinol 197, 11-23.
 
[36]  Powell, B. C., and Rogers, G. E. (1997). In: formation and structure of human hair, P. Jolles, H. Zahn and H. Hocker, eds. PP. 59-148, Birkhauser Verlag, Basel, Switzerland.
 
[37]  Jave-Suarez, L., Langbein, L., Winter, H., Praetzel, S., Rogers, M., Schweizer, J. (2004). Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes. J Invest Dermatol 122, 555-564.
 
[38]  Philpott, M. P., Green, M. R., and Kealey, T. (1990). Human hair growth in vitro. J Cell Sci 97, 463-471.
 
[39]  Inui, S., Fukuzato, Y., Nakajima, T., Yoshikawa, K., and Itami, S. (2002). Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. Faseb J 16, 1967-1969.
 
[40]  Inui, S., Fukuzato, Y., Nakajima, T., Yoshikawa, K., and Itami, S. (2003). Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in androgenetic alopecia. J Investig Dermatol Symp Proc 8, 69-71.
 
[41]  Foitzik, K., Lindner, G. M., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkareva, V., Metz, M., Hibino, T., Soma, T., Paolo dotto, G., Paus, A. (2000). Control of murine hair follicle regression (catagen) by TGF-b1 in vivo. Faseb J 14, 752-760.
 
[42]  Tsuji, Y., Denda, S., Soma, T., Raftery, L., Momoi, T., and Hibino, T. (2003). A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc 8, 65-68.
 
[43]  Hibino, T., and Nishiyama T. (2004). Role of TGF-ß2 in the human hair cycle. J Dermatol Sci 35, 9-18.
 
[44]  Soma, T., Tsuji, Y., and Hibino, T. (2002). Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol l118, 993-7.
 
[45]  Hamada, K., and Randall, V. A. (2006). Inhibitory autocrine factors produced by the mesenchyme-derived hair follicle dermal papilla may be a key to male pattern baldness. Br J Dermatol 154, 609-618.
 
[46]  Williams, D. E., de Vries, P., Namen, A. E., Widmer, M. B., and Lyman, S. D. (1992). The Steel factor. Dev Biol 151, 368-376.
 
[47]  Grichnik, J. M., Burch, J. A., Burchette, J., and Shea, C. R. (1998). The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol 111, 233-238.
 
[48]  Geissler, E. N., Ryan, M. A., and Housman, D. E. (1988). The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55, 185-192.
 
[49]  Fleischman, R. A., Saltman, D. L., Stastny, V., and Zneimer, S. (1991). Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci U S A 88, 10885-10889.
 
[50]  Hibberts, N. A., Messenger, A. G., and Randall, V. A. (1996). Dermal papilla cells derived from beard hair follicles secrete more stem cell factor (SCF) in culture than scalp cells or dermal fibroblasts. Biochem Biophys Res Commun 222, 401-405.
 
[51]  Randall, V. A., Jenner, T.J., and De Oliveira, I. (2001). The human hair follicle contains several populations of melanocyte-lineage cells with differential expression of three melanocyte-lineage markers c-kit and Bc1-2. J Invest Dermatol.
 
[52]  Philpott, M. P., Sanders, D. A., and Kealey, T. (1994). Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J Invest Dermatol 102, 857-861.
 
[53]  Barreca, A., De Luca, M., Del Monte, P., Bondanza, S., Damonte, Cariola, G., Di Marco, E., Giordano, G., Cancedda, R., and Minuto, F. (1992). In vitro paracrine regulation of human keratinocyte growth by fibroblast-derived insulin-like growth factor. J Cell Patho 151, 262-268.
 
[54]  Tavakkol, A., Elder, J.T., Griffiths, C.E.M., Cooper, K.D., Talwar, H., Fisher, G.J., Keane, K.M., Foltin, S.K., and Voorhees, J.J (1992). Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol 99, 343-349.
 
[55]  Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., and Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59-72.
 
[56]  Itami, S., Kurata, S., and Takayasu, S. (1995). Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem Biophys Res Commun 212, 988-994.
 
[57]  Conover, C.A., and Powell, D.R. (1991). Insulin-like growth factor (IGF)-binding protein-3 blocks IGF-I induced receptor down-regulation and cell desensitisation in culture bovin fibrobalsts. Endocrinol 129, 710-716.
 
[58]  Tesch, G.H., Cornell, H.J., Herington, A.C. and Oakes, S. (1993). Effects of insulin-like growth factor binding protein complexes on human fibroblast growth. Growth Reg. 3, 151-159.
 
[59]  Xiong, Y., and Harmon, C.S. (1997). Interleukin-1beta is differentially expressed by human dermal papilla cells in response to PC activation and is a potent inhibitor of human hair follicle growth in organ culture. j interferon Cytokine Res 17, 151-7.
 
[60]  Ruckert, R., Lindner, G., Bulfone-Paus, S., and Pause, R. (2000). High-dose proinflammatory cytokines induce apoptosis of hair bulb keratinocytes in vivo. Br J Dermatol 143, 1036-1069.
 
[61]  Hoffmann, R., Eicheler, W., Wenzel, E., and Happle R. (1997). Interleukin-1beta-induced inhibition of hair growth in vitro is mediated by cyclic AMP. J Inves Dermatol 108, 40-42.
 
[62]  Harmon, C.S., and Nevins, T.D. (1993). IL-1 alpha inhibits human hair follicle growth and hair fiber production in whole-organ cultures. Lymphoine Cytokine Res 12, 197-203.
 
[63]  Kwack, M. H., Kim, M. K., Kim, J. C., Sung, Y. K. (2010). Interleukin-6 secreted from balding dermal papilla cells causes apoptosis in follicular keratinocytes and regulates hair cycling in mice. Exper Dermatol (19), 569.
 
[64]  Montagna, W., and Van Scott, E. J. (1958). The anatomy of the hair follicle, In The biology of hair growth, W. Montagna, and Ellis, R.A., ed. (Academic Press, New York), pp. 39-64.
 
[65]  Lachgar, S., Moukadiri, H., Jonca, F., Charveron, M., Bouhaddioui, N., Gall, Y., Bonafe, J. L., and Plouet, J. (1996). Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J Invest Dermatol 106, 17-23.
 
[66]  Hibberts, N. A., Kato, S., Messenger, A.G., and Randall, V.A. (1996). Dermal papilla cells from human hair follicles secrete factors (e.g. VEGF) mitogenic for endothelial cells. J Invest Dermatol 106, 862.
 
[67]  Merrick, A. E., Hibberts, N.A., Kato, S., Messenger, A.G., Thornton, M.J., and Randall, V.A. (1999). Both beard and scalp cultured dermal papilla cells express mRNA for, and secrete, VEGF but the levels are unaltered by testosterone in vitro. J Invest Dermatol Sym Proc 4, 352.
 
[68]  Lachgar, S., Charveron, M., Ceruti, I., Lagarde, J.M., Gall, Y., and Bonafe, J. L. (1996). VEGF mRNA expression in different stages of the human hair cycle: analysis by confocal laser microscopy. In: Hair research for the next Millenium, D. Van Neste, and V. A. Randall, edc. (Amsterdam: Elsevier) pp. 407-411.
 
[69]  Montagna, W., and Ellis, R. A. (1958). The vascularity and innervation of human hair follicles. In: The biology of hair growth. W.Montagna, and R. A. Ellis, eds. (London: Academic press Inc.) pp. 219-227.
 
[70]  Joseph, I.B., Nelson, J.B., Denmeade, S.R., and Isaacs, J.T. (1997). Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin Cancer Res 3, 2507-2511.
 
[71]  Aslan, G., Cimen, S., Yorukoglu, K., Tuna, B., Sonmez, D., Mungan, U., and Celebi, I. (2005). Vascular endothelial growth factor expression in untreated and androgen-deprived patients with prostate cancer. Pathol Res Pract 201, 593-598.
 
[72]  Khidhir, K. G., , D. F., , N. P., Farjo, B. K.,, E. S., , J. W., , S. M., , V. A. (2013). The prostamide-related glaucoma therapy, bimatoprost, offers a novel approach for treating scalp alopecias. FASEB J 27, 557-567.