American Journal of Medical and Biological Research
ISSN (Print): 2328-4080 ISSN (Online): 2328-4099 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Medical and Biological Research. 2022, 10(1), 1-8
DOI: 10.12691/ajmbr-10-1-1
Open AccessArticle

An Emergence of Multidrug Resistant Nosocomial Pathogen - Acinetobacter baumannii

Satani S.1 and Ratna Trivedi1,

1Department of Environment Science, Shree Ramakrishna Institute of Computer Education and Applied Science, M.T.B. College Campus, Athwalines, Surat – 395001, Gujarat, India

Pub. Date: March 23, 2022

Cite this paper:
Satani S. and Ratna Trivedi. An Emergence of Multidrug Resistant Nosocomial Pathogen - Acinetobacter baumannii. American Journal of Medical and Biological Research. 2022; 10(1):1-8. doi: 10.12691/ajmbr-10-1-1


Nosocomial infections have been recognized as one of the most critical problems in hospitalization, particularly in critical care units. As these infections prolong hospitalization, require extensive diagnostics and treatment, leads to excessive cost. The emergence of multidrug resistant pathogens has become a threat in critically ill, immuno-compromised patients due to the extensive use of antimicrobial. The most common types of nosocomial infections are pneumonia, urinary tract infections, meningitis, wound, soft tissue, surgical site infections and blood stream infections. These infections can be life threatening, capable of making of therapeutic options exceedingly difficult and limits the critical care settings. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp are most common nosocomial pathogens. Among all nosocomial species multidrug resistance (MDR) A.baumannii is most pathogenic microorganism. Here a review on A. Baumannii in relation to nosocomial infection is conducted. This review includes risk factors, diagnosis modalities, pathogenesis, MDR properties, mechanism of MDR and treatment of A. Baumannii.

MDR mechanism of resistance nosocomial infection risk factor

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Alsan, M. & Klompas, M. Acinetobacter baumannii: An Emerging and Important Pathogen. Journal of Clinical Outcomes and Managment. 17, 363-369 (2010).
[2]  Bonomo, R. A. Pathogenesis of Acinetobacter spp (Case Western Reserve University, 2010).
[3]  Baumann, P., Doudoroff, M. & Stanier, R. Y. A Study of the Moraxellk Group II. Oxidative-negative Species (Genus Acinetobacter). Journal of bacteriology 95, 1520-1541 (1968).
[4]  Fournier, P. E. et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS genetics 2, e7, (2006).
[5]  Du, X. et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. American journal of infection control 47, 1140-1145, (2019).
[6]  Yang, C. H., Su, P. W., Moi, S. H. & Chuang, L. Y. Biofilm Formation in Acinetobacter Baumannii: Genotype-Phenotype Correlation. Molecules 24, (2019).
[7]  Trottier, V. et al. Outcomes of Acinetobacter baumannii infection in critically ill burned patients. Journal of burn care & research: official publication of the American Burn Association 28, 248-254, (2007).
[8]  Howard, A., O'Donoghue, M., Feeney, A. & Sleator, R. D. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3, 243-250, (2012).
[9]  Gaynes, R. & Edwards, J. R. Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. Healthcare Epidemiology 41, 848-854 (2005).
[10]  Doughari, H. J., Ndakidemi, P. A., Human, I. S. & Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes and environments 26, 101-112, (2011).
[11]  Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: Emergence of a Successful Pathogen. Clinical microbiology reviews 21, 538-582, (2008).
[12]  Garnacho-Montero, J. et al. Optimum treatment strategies for carbapenem-resistant Acinetobacter baumannii bacteremia. Expert review of anti-infective therapy 13, 769-777, (2015).
[13]  Wood, G. C., Hanes, S. D., Boucher, B. A., Croce, M. A. & Fabian, T. C. Tetracyclines for treating multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia. Intensive care medicine 29, 2072-2076, doi:10.1007/s00134-003-1811-2 (2003).
[14]  Basri, R. et al. Burden of Bacterial Meningitis: A Retrospective Review on Laboratory Parameters and Factors Associated With Death in Meningitis, Kelantan Malaysia. Nagoya J. Med. Sci. 77. 59-68, 2015 77, 59-68 (2015).
[15]  Johnson, E. N., Burns, T. C., Hayda, R. A., Hospenthal, D. R. & Murray, C. K. Infectious complications of open type III tibial fractures among combat casualties. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 45, 409-415, (2007).
[16]  Murray, C. K. et al. Bacteriology of war wounds at the time of injury. Military medicine 171, 826-829, (2006).
[17]  Bergogne-Be´re´zin, E. & Towner, K. J. Acinetobacter spp. as Nosocomial Pathogens: Microbiological, Clinical, and Epidemiological Features. Clinical Microbiology Reviews, Apr. 1996, p. 148-165 9, 148-165 (1996).
[18]  Antunes, L. C., Visca, P. & Towner, K. J. Acinetobacter baumannii: evolution of a global pathogen. Pathogens and disease 71, 292-301, (2014).
[19]  Choi, C. H. et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cellular microbiology 7, 1127-1138, (2005).
[20]  Gaddy, J. A. et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 80, 1015-1024, (2012).
[21]  Gaddy, J. A., Tomaras, A. P. & Actis, L. A. The Acinetobacter baumannii 19606 OmpA Protein Plays a Role in Biofilm Formation on Abiotic Surfaces and in the Interaction of This Pathogen with Eukaryotic Cells. Infection and Immunity 77, 3150-3160, (2009).
[22]  Rumbo, C. et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 82, 4666-4680, (2014).
[23]  Smani, Y., Dominguez-Herrera, J. & Pachon, J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii. The Journal of infectious diseases 208, 1561-1570, doi:10.1093/infdis/jit386 (2013).
[24]  Smani, Y., McConnell, M. J. & Pacho´n, J. Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells. PloS one 7, e33073, (2012).
[25]  Smani, Y. & Pachon, J. Loss of the OprD homologue protein in Acinetobacter baumannii: impact on carbapenem susceptibility. Antimicrobial agents and chemotherapy 57, 677, (2013).
[26]  Kenyon, J. J. & Hall, R. M. Variation in the Complex Carbohydrate Biosynthesis Loci of Acinetobacter baumannii Genomes. PloS one 8, e62160, (2013).
[27]  Geisinger, E. & Isberg, R. R. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS pathogens 11, e1004691, (2015).
[28]  Liou, M. L. et al. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 47, 275-281, (2014).
[29]  Luke, N. R. et al. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect Immun 78, 2017-2023, (2010).
[30]  Stahl, J., Bergmann, H., Gottig, S., Ebersberger, I. & Averhoff, B. Acinetobacter baumannii Virulence Is Mediated by the Concerted Action of Three Phospholipases D. PloS one 10, e0138360, (2015).
[31]  Kwon, S. O., Gho, Y. S., Lee, J. C. & Kim, S. I. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS microbiology letters 297, 150-156, (2009).
[32]  Jin, J. S. et al. Acinetobacter baumannii Secretes Cytotoxic Outer Membrane Protein A via Outer Membrane Vesicles. PloS one 6, e17022, (2011).
[33]  Huang, W. et al. Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PloS one 9, e100727, (2014).
[34]  Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nature reviews. Microbiology 10, 336-351, (2012).
[35]  Repizo, G. D. et al. Differential Role of the T6SS in Acinetobacter baumannii Virulence. PloS one 10, e0138265, (2015).
[36]  Bentancor, L. V., Camacho-Peiro, A., Bozkurt-Guzel, C., Pier, G. B. & Maira-Litran, T. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii. Journal of bacteriology 194, 3950-3960, (2012).
[37]  Koenigs, A., Zipfel, P. F. & Kraiczy, P. Translation Elongation Factor Tuf of Acinetobacter baumannii Is a Plasminogen-Binding Protein. PloS one 10, e0138398, (2015).
[38]  Liu, C. et al. Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget 9, 21663-21673 (2018).
[39]  Ardebili, A., Lari, A. R., Beheshti, M. & Lari, E. R. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iranian Journal of Basic Medical Sciences 18, 623-626 (2015).
[40]  Drlica, K. & Zhao, X. DNA Gyrase, Topoisomerase IV, and the 4-Quinolones. Microbiology and Molecular Biology Reviews 61, 377-392 (1997).
[41]  Mak, J. K., Kim, M. J., Pham, J., Tapsall, J. & White, P. A. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. The Journal of antimicrobial chemotherapy 63, 47-54, (2009).
[42]  Hujer, K. M. et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrobial agents and chemotherapy 50, 4114-4123, (2006).
[43]  Koh, T. H., Sng, L. H., Wang, G. C., Hsu, L. Y. & Zhao, Y. IMP-4 and OXA beta-lactamases in Acinetobacter baumannii from Singapore. The Journal of antimicrobial chemotherapy 59, 627-632, (2007).
[44]  Landman, D. et al. Citywide Clonal Outbreak of Multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY. ARCH INTERN MED 162, 1515-1520 (2002).
[45]  Docquier, J. D. et al. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. The Journal of antimicrobial chemotherapy 51, 257-266, (2003).
[46]  Nagano, N., Nagano, Y., Cordevant, C., Shibata, N. & Arakawa, Y. Nosocomial transmission of CTX-M-2 beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. Journal of clinical microbiology 42, 3978-3984, (2004).
[47]  Potron, A., Munoz-Price, L. S., Nordmann, P., Cleary, T. & Poirel, L. Genetic features of CTX-M-15-producing Acinetobacter baumannii from Haiti. Antimicrobial agents and chemotherapy 55, 5946-5948, (2011).
[48]  LS, T. & RA, B. SHV-type beta-lactamases. Current Pharmaceutical Design 5, 847-864 (1999).
[49]  Naas, T. et al. VEB-1 Extended-Spectrum β-lactamase–producing Acinetobacter baumannii, France. Emerging Infectious Diseases 12, 1214-1222, (2006).
[50]  Jeon, B. C. et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 beta-lactamase in korea. Journal of clinical microbiology 43, 2241-2245, (2005).
[51]  Pasteran, F. et al. Emergence of PER-2 and VEB-1a in Acinetobacter baumannii Strains in the Americas. Antimicrobial agents and chemotherapy 50, 3222-3224, (2006).
[52]  Shaw, K. J., Rather, P. N., Hare, R. S. & Miller, G. H. Molecular Genetics of Aminoglycoside Resistance Genes and Familial Relationships of the Aminoglycoside-Modifying Enzymes. Microbiological Reviews 57, 138-163 (1993).
[53]  Nemec, A., Dolzani, L., Brisse, S., van den Broek, P. & Dijkshoorn, L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. Journal of medical microbiology 53, 1233-1240, (2004).
[54]  Jones, L. A., McIver, C. J., Kim, M. J., Rawlinson, W. D. & White, P. A. The aadB gene cassette is associated with blaSHV genes in Klebsiella species producing extended-spectrum beta-lactamases. Antimicrobial agents and chemotherapy 49, 794-797, (2005).
[55]  N.Rather, P. Origins of the aminoglycoside modifying enzymes. Drug Resistance Updates 1, 285-291 (1998).
[56]  Marchand, I., Damier-Piolle, L., Courvalin, P. & Lambert, T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrobial agents and chemotherapy 48, 3298-3304, (2004).
[57]  Coyne, S., Rosenfeld, N., Lambert, T., Courvalin, P. & Perichon, B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 54, 4389-4393, (2010).
[58]  Vilacoba, E. et al. Emergence and Spread of Plasmid-Borne tet(B)::ISCR2 in Minocycline-Resistant Acinetobacter baumannii Isolates. Antimicrobial agents and chemotherapy 57, 651-654 (2013).
[59]  Coyne, S., Courvalin, P. & Perichon, B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrobial agents and chemotherapy 55, 947-953, (2011).
[60]  Roca, I. et al. CraA, a major facilitator superfamily efflux pump associated with chloramphenicol resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 53, 4013-4014, (2009).
[61]  Rajamohan, G., Srinivasan, V. B. & Gebreyes, W. A. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. The Journal of antimicrobial chemotherapy 65, 1919-1925, (2010).
[62]  Sharma, A., Sharma, R., Bhattacharyya, T., Bhando, T. & Pathania, R. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF. The Journal of antimicrobial chemotherapy 72, 68-74, (2017).
[63]  Su, X. Z., Chen, J., Mizushima, T., Kuroda, T. & Tsuchiya, T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrobial agents and chemotherapy 49, 4362-4364, (2005).
[64]  Barnard, F. M. & Maxwell, A. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrobial agents and chemotherapy 45, 1994-2000, (2001).
[65]  Yu, Y. S., Zhou, H., Yang, Q., Chen, Y. G. & Li, L. J. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. The Journal of antimicrobial chemotherapy 60, 454-455, doi:10.1093/jac/dkm208 (2007).
[66]  Cayo, R. et al. Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrobial agents and chemotherapy 55, 5907-5913, (2011).
[67]  Ribera, A., Ruiz, J. & Vila, J. Presence of the Tet M determinant in a clinical isolate of Acinetobacter baumannii. Antimicrobial agents and chemotherapy 47, 2310-2312, (2003).
[68]  Adams, M. D. et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrobial agents and chemotherapy 53, 3628-3634, (2009).
[69]  Moffatt, J. H. et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrobial agents and chemotherapy 54, 4971-4977, (2010).
[70]  Arroyo, L. A. et al. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrobial agents and chemotherapy 55, 3743-3751, (2011).
[71]  Mussi, M. A., Relling, V. M., Limansky, A. S. & Viale, A. M. CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for L-ornithine uptake. FEBS letters 581, 5573-5578, (2007).
[72]  Bou, G. n., M., G. C., Dom, A. & Carmen Quereda. Characterization of a Nosocomial Outbreak Caused by a Multiresistant Acinetobacter baumannii Strain with a Carbapenem-Hydrolyzing Enzyme: High-Level Carbapenem Resistance in A. baumannii Is Not Due Solely to the Presence of β-Lactamases. Journal of clinical microbiology 38, 3299-3505 (2000).
[73]  del Mar Tomas, M. et al. Cloning and functional analysis of the gene encoding the 33- to 36-kilodalton outer membrane protein associated with carbapenem resistance in Acinetobacter baumannii. Antimicrobial agents and chemotherapy 49, 5172-5175, (2005).
[74]  Quale, J., Bratu, S., Landman, D. & Heddurshetti, R. Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Acinetobacter baumannii Endemic in New York City. Clinical Infectious Diseases 37, 214-220 (2003).
[75]  Dupont, M., Pagès, J.-M., Lafitte, D., Siroy, A. & Bollet, C. Identification of an OprD homologue in Acinetobacter baumannii. Journal of Proteome Research 4, 2386-2390 (2005).
[76]  Vijayakumar, S., Biswas, I. & Veeraraghavan, B. Accurate identification of clinically important Acinetobacter spp.: an update. Future Science OA 5, 1-18 (2019).
[77]  Khan, M. F. & Aziz, F. Antibiotic Resistance: Preparation for Post-Antibiotic Era. EC Microbiology 3, 409-411 (2016).
[78]  Urban, C. et al. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. 167, 448-452 (1993).
[79]  Corbella, X. et al. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. Journal of Antimicrobiology and Chemotherapy 42, 793-802 (1998).
[80]  Dinc, G. et al. Antimicrobial efficacy of doripenem and its combinations with sulbactam, amikacin, colistin, tigecycline in experimental sepsis of carbapenem-resistant Acinetobacter baumannii. New Microbiologica 38, 67-73 (2015).
[81]  Paudel, R. & Nepal, H. P. Tigecycline: pharmacological concerns and resistance. International Journal of Basic & Clinical Pharmacology 9, 1296, (2020).
[82]  Cunha, B. A., Mcdermott, B. & Nausheen, S. Single Daily High-Dose Tigecycline Therapy of a Multidrug-Resistant (MDR) Klebsiella pneumoniae and Enterobacter aerogenes Nosocomial Urinary Tract Infection. Journal of Chemotherapy 19, 753-754 (2007).
[83]  Navon-Venezia, S., Leavitt, A. & Carmeli, Y. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. Journal of Antimicrobiology and Chemotherapy 59, 772-724 (2007).
[84]  Al-Agamy, M. H. et al. First Detection of GES-5 Carbapenemase-Producing Acinetobacter baumannii Isolate. Microbial Drug Resistance 23, 556-562 (2017).
[85]  Tsioutis, C. et al. Clinical epidemiology, treatment and prognostic factors of extensively drug-resistant Acinetobacter baumannii ventilator-associated pneumonia in critically ill patients. International Journal of Antimicrobial Agents 48, 492-497 (2016).
[86]  Koksal, I., Kaya, S., Gencalioglu, E. & Yilmaz, G. Evaluation of Risk Factors for Intravenous Colistin Use-related Nephrotoxicity. Oman Medical Journal 31, 318-321, (2016).
[87]  Ozkan, G. et al. How does colistin-induced nephropathy develop and can it be treated? Antimicrobial agents and chemotherapy 57, 3463-3469 (2013).
[88]  Hejnar, P., Kolár, M. & Hájek, V. Characteristics of Acinetobacter strains (phenotype classification, antibiotic susceptibility and production of beta-lactamases) isolated from haemocultures from patients at the Teaching Hospital in Olomouc. Acta University Palacki Olomuc Faculty of Medicine 142, 73-77 (1999).
[89]  Baadani, A. M., Thawadi, S. I., El-Khizzi, N. A. & Omrani, A. S. Prevalence of colistin and tigecycline resistance in Acinetobacter baumannii clinical isolates from 2 hospitals in Riyadh Region over a 2-year period. Suadi Medicine Journal 34, 248-253 (2013).
[90]  Maspi, H., Hosseini, H. M., Amin, M. & Fooladi, A. A. I. High prevalence of extensively drug-resistant and metallo beta-lactamase-producing clinical Acinetobacter baumannii in Iran. Microbiology and Pathology 98, 155-159 (2016).
[91]  Gupta, M. et al. Colistin-resistant Acinetobacter baumannii ventilator-associated pneumonia in a tertiary care hospital: an evolving threat. Journal of Hospital Infection 94, 72-73 (2016).