American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: http://www.sciepub.com/journal/ajma Editor-in-chief: Grigori Rozenblum
Open Access
Journal Browser
Go
American Journal of Mathematical Analysis. 2013, 1(3), 39-41
DOI: 10.12691/ajma-1-3-3
Open AccessArticle

g-reciprocal Continuity in Symmetric Spaces

Arvind Bhatt1,

1Applied Science Department, Bipin Tripahti Kumaon Institute of Technology, Almora, India

Pub. Date: September 29, 2013

Cite this paper:
Arvind Bhatt. g-reciprocal Continuity in Symmetric Spaces. American Journal of Mathematical Analysis. 2013; 1(3):39-41. doi: 10.12691/ajma-1-3-3

Abstract

In this paper, we obtain a common fixed point theorem by employing the notion of g-reciprocal continuity in symmetric spaces. We demonstrate that g-reciprocal continuity ensures the existence of common fixed point under strict contractive conditions, which otherwise do not ensure the existence of fixed points.

Keywords:
fixed point theorems symmetric spaces g-reciprocal continuity noncompatible mappings g-compatible

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188.
 
[2]  B. E. Rhoades, Contractive definitions and continuity, Contemporary Math. (Amer. Math. Soc.) 72 (1988), 233-245.
 
[3]  Fang Jin-xuan and Gao Yang, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Analysis 70 (2009), 184-193.
 
[4]  G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(1986), 771-779.
 
[5]  H. K. Pathak and M. S. Khan, A comparison of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28 no. 4, (1997), 477-485.
 
[6]  I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space under strict contractive conditions, Southeast Asian Bull. Math., 32(2008), 117-124.
 
[7]  M. Imdad, Javid Ali and Ladlay Khan, Coincidence fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl., 320 (2006), 352-360.
 
[8]  R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc. 90(1998), 281-286.
 
[9]  R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289.
 
[10]  R. P. Pant and R. K. Bisht, Common fixed points of pseudo compatible mappings, Revista de la Real Academia de Ciencias Exactas, FĂ­sicas y Naturales. Serie A. Matemáticas.
 
[11]  R. P. Pant and V. Pant, Common fixed points under strict contractive conditions, J. Math. Anal. Appl., 248 (2000), 327-332.
 
[12]  R. K. Bisht, Common fixed points of generalized Meir-Keeler type condition and nonexpansive mappings; The International Journal of Mathematics and Mathematical Sciences, Volume 2012, Article ID 786814, 12 pages.
 
[13]  R.U.Joshi, et.al, Common Fixed Points under Strict Contractive Condition and g-reciprocal Continuity, Journal of International Academy of Physical Sciences, Vol. 16 No.1 (2012).
 
[14]  W.A.Wilson, on semi-metric spaces, Amer.J.Math, 53(1931), 361-373.