American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: http://www.sciepub.com/journal/ajma Editor-in-chief: Grigori Rozenblum
Open Access
Journal Browser
Go
American Journal of Mathematical Analysis. 2015, 3(1), 1-4
DOI: 10.12691/ajma-3-1-1
Open AccessArticle

Inequalities for the Sth Derivative of Polynomials Not Vanishing inside A Circle

GULSHAN SINGH1,

1Govt. Department of Education Jammu and Kashmir, India

Pub. Date: January 23, 2015

Cite this paper:
GULSHAN SINGH. Inequalities for the Sth Derivative of Polynomials Not Vanishing inside A Circle. American Journal of Mathematical Analysis. 2015; 3(1):1-4. doi: 10.12691/ajma-3-1-1

Abstract

Let P(z) be a polynomial of degree n having all its zeros in , then for , Bidkham and Dewan [J. Math. Anal. Appl. 166(1992), 191-193] proved max In this paper, we prove an interesting generalization as well as an improvement of this result by considering the sth derivative of lacunary type of polynomials P(z) of degree n > 3.

Keywords:
derivative of a polynomial zeros exterior of circle lacunary inequalities

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), No. 3, 306-313.
 
[2]  M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl., Vol. 166 (1992), 319-324.
 
[3]  T. N. Chan and M. A. Malik, On Erdos-Lax Theorem, Proc. Indian Acad. Sci. (Math. Sci.), 92 (3) (1983), 191-193.
 
[4]  K. K. Dewan, Jagjeet Kaur and Abdullah Mir, Inequalities for the derivative of a polynomial, J. Math. Anal. Appl., 269 (2002), 489-499.
 
[5]  N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1) (1991), 29-35.
 
[6]  P. D. Lax, Proof of a conjecture of P. Erdos on the derivative of a polynomial, Amer. Math. Soc., Bulletin, 50 (1944), 509-513.
 
[7]  M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 2 (1) (1969), 57-60.
 
[8]  M. S. Pukhta Extremal Problems for Polynomials and on Location of Zeros of Polynomials, Ph. D Thesis, Jamia Millia Islamia, New Delhi (1995).
 
[9]  M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343.
 
[10]  P. TurĂ¡n, Uber die Ableitung von Polynomen, Compositio Mathematica, 7 (1939), 89-95 (German).