American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: Editor-in-chief: Grigori Rozenblum
Open Access
Journal Browser
American Journal of Mathematical Analysis. 2014, 2(3), 33-35
DOI: 10.12691/ajma-2-3-1
Open AccessArticle

Some Identities Involving Common Factors of k-Fibonacci and k-Lucas Numbers

Deepika Jhala1, , G.P.S. Rathore2 and Bijendra Singh1

1School of Studies in Mathematics, Vikram University, Ujjain (India)

2College of Horticulture, Mandsaur (India)

Pub. Date: June 16, 2014

Cite this paper:
Deepika Jhala, G.P.S. Rathore and Bijendra Singh. Some Identities Involving Common Factors of k-Fibonacci and k-Lucas Numbers. American Journal of Mathematical Analysis. 2014; 2(3):33-35. doi: 10.12691/ajma-2-3-1


Fibonacci sequence stands as a kind of super sequences with fabulous properties. In this paper we present identities involving Common factors of k-Fibonacci and k-Lucas number. Also Binet’s formula will employ to this identity.

Fibonacci number Fibonacci sequence k- Fibonacci number and k- Lucas number

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Benjamin, A. T. and Quinn, J. J., “Recounting Fibonacci and Lucas identies”, The College Mathematics Journal, 30 (5) (1999), 359-366.
[2]  Falcon, S. & Plaza, A., “On the Fibonacci k-numbers”, Chaos, Solitons & Fractals, 32 (5), (2007), 1615-24.
[3]  Falcon S. and Plaza A., The k-Fibonacci hyperbolic functions, Chaos Solitons and Fractals, 38 (2) (2008), 409-420.
[4]  Falcon, S., “On the k-Lucas Numbers”, Int. J. Contemp. Math. Sciences, 6 (21), (2011), 1039-1050.
[5]  Hoggatt, V.E. Jr., “Fibonacci and Lucas Numbers”, Houghton – Mifflin Co., Boston (1969).
[6]  Horadam A. F., A generalized Fibonacci sequences, Mathematical Magazine. 68 (1961), 455-459.
[7]  Horadam A. F. and Shanon A. G.., Generalized Fibonacci triples, American Mathmatical Monthly, 80 (1973), 187-190.
[8]  Koshy, T., “Fibonacci and Lucas Numbers with Applications”, John Wiley, New York (2001).
[9]  Kilic E., The Binet formula, sums and representation of generalized Fibonacci p-numbers, Eur. J. Combin, 29 (3) (2008), 701-711.
[10]  Panwar, Y. K., B. Singh and Gupta, V. K., “identities of Common Factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers”, Applied Mathematics and Physics, 1 (4), (2013), 126-128.
[11]  Thongmoon, M., “New Identities for the Even and Odd Fibonacci and Lucas Numbers”, Int. J. Contemp. Math. Sciences, 4 (14), (2009), 671-676.
[12]  Thongmoon, M., “Identities for the common factors of Fibonacci and Lucas numbers”. International Mathematical Forum, 4 (7), (2009), 303-308.
[13]  Yilmaz, N., Taskara, N., Uslu,K., Yazlik, Y., On the binomial sums of k-Fibonacci and k-Lucas Sequences, American institue of Physics (AIP) Conf. Proc.