American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: http://www.sciepub.com/journal/ajma Editor-in-chief: Grigori Rozenblum
Open Access
Journal Browser
Go
American Journal of Mathematical Analysis. 2014, 2(2), 28-32
DOI: 10.12691/ajma-2-2-3
Open AccessArticle

Exact Soliton Solutions of the 1D Generalized Gross-Pitaevskii Equation with Quadratic Potential and Parameterized Nonlinearity

Ying Wang1, Qing-Chun Zhou1, Ya-Lun Li1 and Yu Zhou1,

1School of Mathematics and Physics, Jiangsu University of Science and Technology, Jiangsu, China

Pub. Date: June 11, 2014

Cite this paper:
Ying Wang, Qing-Chun Zhou, Ya-Lun Li and Yu Zhou. Exact Soliton Solutions of the 1D Generalized Gross-Pitaevskii Equation with Quadratic Potential and Parameterized Nonlinearity. American Journal of Mathematical Analysis. 2014; 2(2):28-32. doi: 10.12691/ajma-2-2-3

Abstract

We investigate the 1D generalized Gross-Pitaevskii equation (GGPE) with quadratic potential and parameterized nonlinearity. The coefficients of terms of GGPE studied are arbitrary functions of time t. The exact solution(s) of the GGPE are obtained via expansion method with particular soliton features highlighted.

Keywords:
Gross-Pitaevskii equation lens-type transformation expansion method soliton

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Mendonça, J. T. and Terças, H. Physics of Ultra-Cold Matter, Springer, New York, 2013.
 
[2]  Levin, K., Fetter, A. and Stamper-Kurn, D. Ultracold Bosonic and Fermionic Gases, Elsevier, Oxford, 2012.
 
[3]  Zhang, A. X. and Xue, J. K., “Dynamics of Bright/Dark Solitons in Bose-Einstein Condensates with Time-Dependent Scattering Length and External Potential,” Chin. Phys. Lett. 25. 39. 2008.
 
[4]  Liu, H., He, D., Lou, S. Y., and He, X. T., “Bright Soliton Solutions in Degenerate Fermi Gas near Feshbach Resonance,” Chin. Phys. Lett. 26.120308. 2009.
 
[5]  Zhang, S., Ba, J. M., Sun, Y. N. and Ling, D. Z., A Generalized (G'/G)-Expansion Method for the Nonlinear Schrodinger Equation with Variable Coefficients,Naturforsch. 64a 691. 2009.
 
[6]  Fei, J. X. and Zheng, C. L., “Exact Projective Excitations of a Generalized (3+1)-Dimensional Gross-Pitaevskii System with Varying Parameters,” Chin. J. Phys. 51. 200. 2013.
 
[7]  Trallero-Ginera, C., Drake-Pereza, J. C., Lopez-Richardb, V. and Birmanc, J. L., “Formal analytical solutions for the Gross–Pitaevskii equation,” Physica D 237. 2342. 2008.
 
[8]  Atre, R,, Panigrahi, P. K. and Agarwal, G. S., “Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation,” Phys. Rev. E 73. 056611. 2006.
 
[9]  Feshbach, H., “Unified theory of nuclear reactions,” Ann. Phys. (N.Y.), 5. 357. 1958.; ibid. 19. 287. 1962.; Inouye, S., Andrews, M. R., Stenger, J., Miesner, H., Stamper-Kurn, D. M. and Ketterle, W., “Observation of Feshbach resonances in a Bose–Einstein condensate”,Nature 392. 151. 1998.
 
[10]  Zwerger W The BCS-BEC Crossover and the Unitary Fermi Gases, Springer, Berlin, 2012.
 
[11]  Li, L. X., LI, E. Q. and Wang, M. L., “ The (G’/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations,” Appl. Math. J. Chinese Univ. 25 (4). 454. 2010.
 
[12]  Heiselberg, H., “Collective Modes of Trapped Gases at the BEC-BCS Crossover,” Phys. Rev. Lett. 93. 040402. 2004.
 
[13]  Yin, J., Ma, Y. and Huang, G., “Analytical expressions of collective excitations for trapped superfluid Fermi gases in a BCS-BEC crossover,” Phys. Rev. A 74. 013609. 2006.
 
[14]  Zhou, Y. and Huang. G., “Collective modes of low-dimensional superfluid Fermi gases in the BCS-BEC crossover: Time-dependent variational analysis,” Phys. Rev. A 75. 023611. 2007.
 
[15]  Kim, Y. E. and Zubarev, A. L., “Time-dependent density-functional theory for trapped strongly interacting fermionic atoms,” Phys. Rev. A 70. 033612. 2004.
 
[16]  Ghosh, T. K. and Machida, K., “Sound velocity and multibranch Bogoliubov spectrum of an elongated Fermi superfluid in the BEC-BCS crossover,” Phys. Rev. A 73. 013613. 2006.
 
[17]  Hu, H., Minguzzi, A., Liu, X. J. and Tosi, M. P., “Collective Modes and Ballistic Expansion of a Fermi Gas in the BCS-BEC Crossover,” Phys. Rev. Lett. 93. 190403. 2004.
 
[18]  Trallero-Giner, C., Cipolatti, R. and Liew Timothy, C. H., “One-dimensional cubic-quintic Gross-Pitaevskii equation for Bose-Einstein condensates in a trap potential,” Eur. Phys. J. D 67. 143. 2013.
 
[19]  Muryshev, A., Shlyapnikov, G. V., Ertmer, W., Sengstock, K. and Lewenstein, M., “Dynamics of Dark Solitons in Elongated Bose-Einstein Condensates,” Phys. Rev. Lett. 89. 110401. 2002.
 
[20]  Theocharis, G. et al, “Modulational instability of Gross-Pitaevskii-type equations in 1+1 dimensions,”Phys. Rev. A 67. 063610. 2003.
 
[21]  Sulem, C. and Sulem, P. L., The Nonlinear Schrödinger Equation, Springer, New York, 1999.