American Journal of Mathematical Analysis
ISSN (Print): 2333-8490 ISSN (Online): 2333-8431 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Mathematical Analysis. 2014, 2(2), 23-27
DOI: 10.12691/ajma-2-2-2
Open AccessArticle

On Location of Zeros of Polynomials


1Division of Agri. Statistics, Sher-e-Kashmir, University of Agricultural Sciences and Technology of Kashmir, India

Pub. Date: May 25, 2014

Cite this paper:
M S PUKHTA. On Location of Zeros of Polynomials. American Journal of Mathematical Analysis. 2014; 2(2):23-27. doi: 10.12691/ajma-2-2-2


If be a polynomial of degree n such that aj=aj+ibj where aj and bj, j = 0, 1, ….., n are real numbers. In this paper we obtain a generalization of well known result of Eneström -Kakeya concerning the bounds for the moduli of the zeros of polynomials with complex coefficients which improve upon some results due to A. Aziz and Q.G Mohammad and others.

complex polynomials zeros Eneström – Kakeya Theorem

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  A. Aziz and Q. G. Mohammad, Zero free regions for polynomials and some generalizations of Enström-Kakeya theorem, Cand. Math. Bull., 27(1984), 265-272.
[2]  G. Eneström, Remarqueesur un Theoremerelatif aux racines de I’ equation anxn + an-1xn-1 + ……+ a0 = 0 outous les coefficients sont reels et possitifs, Tôhoku Math. J., 18 (1920), 34-36.
[3]  A. Hurwitz, Űberdie Nullslenllen der Bessel Schen Function, Math. Ann., 33(1989)246-266.
[4]  A.Joyal, G.Labelle and Q.I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull., 10 (1967), 53-63.
[5]  S.Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J., 2 (1912-13), 140-142.
[6]  A. Aziz and B. A. Zargar, Some extensions of Enström-Kakeya Theorem, Glasnik Mate., 31(1996), 239-244.