American Journal of Industrial Engineering
ISSN (Print): 2377-4320 ISSN (Online): 2377-4339 Website: http://www.sciepub.com/journal/ajie Editor-in-chief: Ajay Verma
Open Access
Journal Browser
Go
American Journal of Industrial Engineering. 2013, 1(2), 5-11
DOI: 10.12691/ajie-1-2-1
Open AccessArticle

Numerical Simulation of a Spiral Wall

A. Z.DELLIL1,

1Institut de Maintenance et de Sécurité Industrielle, IMSI, Université d'es-senia,Laboratoire. Mécanique .Appliquée USTO, Oran, ALGERIE

Pub. Date: May 30, 2013

Cite this paper:
A. Z.DELLIL. Numerical Simulation of a Spiral Wall. American Journal of Industrial Engineering. 2013; 1(2):5-11. doi: 10.12691/ajie-1-2-1

Abstract

This work presents a study of the thermal characteristics of a turbulent flow of a forced convection along various geometrical configurations: Smooth wall, wall corrugated in spiral, corrugated wall. The effects of pitch/diameter ratio and rib height to diameter ratio made it possible to develop this impact of this geometrical form (sometimes corrugated, sometimes spiral) in the intensification of the heat transfer. The physical process of increase in the heat transfer comes owing to the fact that the spiral shape of the tube contributes to break the formed boundary layer and to allow the continual replacement of the fluid meadows of the solid wall. The numerical results obtained prove that this corrugated form or into spiral intensifies the heat transfer thanks to model SST for Reynolds numbers varying from 5000 to 55000, Indeed when the pitch and the depth of the rib increases from P/dh = 0.18, e/dh = 0.02 to P/dh = 0.27, e/dh = 0.06. The ratio of the numbers of Nusselt increases with the rise in the step and the depth of the notch. Several explanations can be advanced, among these last, the spirals are the cause of the presence of the viscous effects, which slow down the flow in the notch of the spiral (broken boundary layer). The low depth of the notch, going from 0.02 up to 0.04 does not allow a significant thermal intensification, on the other hand for the strong values of the notch (0.05 to 0.06) the presence of turbulence supports good Nusselt. We notes that this last increases with the amplitude of the undulation up to the value of 0.05H. Beyond the value of the amplitude, the number of Nusselt tends towards the constant value.

Keywords:
corrugated wall turbulence model SST model thermal transfer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  Hudson.J.D. 1993. ’The effect of a wavy boundary on turbulent flow’. PhD,University of Illinois, Urbana, IL.
 
[2]  Schiestel, R.; Chauve, M.P.. 1982. ’Influence d’ondulation de faible amplitude sur une convection turbulente en conduite axisymétrique’, Communication au 5ième congrès français de mécanique. Marseille.
 
[3]  Saniei, N.; Dini S.. 1993. ‘Heat transfer characteristics in a wavy walled channel’, J.Heat Transfer 115, 788-792.
 
[4]  Hsu, S.T; Kennedy, J.F.. 1971.’Turbulent flow in wavy pipes’, J.Fluid Mech.47, 481-502.
 
[5]  Tanda ,G.; Vittori, G. (1996). ‘Fluid flow and heat transfer in a two dimensional wavy chanel, Heat Mass Transfer 31, 411-418.
 
[6]  Rousseau, P.G.; Van Eldik, M., G.P.Greyvenstein. 2003. ‘Detailed simulation of fluted tube water heating Condensers’, International Journal of refrigeration 26, 232-239.
 
[7]  Klebanoff.P.S, Schubaeur G.B.1955. ‘Investigation of separation of the turbulent Boundary layer’ N.A.C.A. tech.Note n° 2133.
 
[8]  Nikuradse J. 1930.’Turbulente stromung in nicht kreisformigen Rohren’.  Ind. Arch 1.
 
[9]  Hudson J,; Dykhno L ,; Hanratty. 1996. ‘Turbulent production in flow over wavy wall‘, Exp. Fluids 20, 257-65.
 
[10]  Jones W. P.,; Launder B. E. 1972.’ Prediction of Relaminarisation with a Two Equation Turbulence Model‘, Int. Journal of Heat and Mass Transfer, 15,310-314.
 
[11]  Gosse J.,; Schiestel R.. 1976. ‘Convection dans les tubes ondulés’, Revue Générale de thermique, 172.
 
[12]  Launder B. E.; Spalding D. B.. 1972.’ Mathematical models of turbulence Academic Press’, London and N.-Y.
 
[13]  Mari C.,; Jeandel D.,; Mathieu J. .1975. ‘Méthode de calcul de la couche limiteTurbulente compressible avec transfert de chaleur’, Int. J. Heat .Mass transfer, Vol.19, 893-899.
 
[14]  Patel V.C.,; Rodi W.,; Scheuerer G.. 1985. ‘Turbulence models for near wall and low Reynolds number flows’: A review. AIAA Journal, 23, 1308-1319.
 
[15]  Richmond.M.C,V.; Patel C.. 1991.’Convex and concave surface curvatures effects in Wall bounded turbulent flow’, AIAA.J.vol 29, 895-902.
 
[16]  Tyndall Chon J;Yoon J . Y. 1991.’Turbulent Flow in a Channel with a Wavy wall’, Journal of Fluids Engineering, Vol. 113, pp. 579-586.
 
[17]  Wang,G.; Vanka S. P..1995. ’Convective Heat Transfer in Periodic Wavy Passages’, Int. J. Heat Mass Transfer, Vol. 38, N°.17, 3219-3230.
 
[18]  Pethkool, S.; Eiasaard, S; Kwankaomeng, S.; Promvonge P. 2011. ’Turbulent HeatTransfer enhancement in a heat exchanger using helically corrugated tube’, Int Communications in heat and mass transfer, Vol 38, 340-347.
 
[19]  Menter, F.R.1994. ’Two-equation eddy-viscosity turbulence models for engineering applications’. AIAA-Journal, 328, pp. 269-289.
 
[20]  Wilcox, D.C. 1993. ’Turbulence Modeling for CFD’. DCW Industries, Inc., La Canada, CA.