American Journal of Infectious Diseases and Microbiology
ISSN (Print): 2328-4056 ISSN (Online): 2328-4064 Website: Editor-in-chief: Maysaa El Sayed Zaki
Open Access
Journal Browser
American Journal of Infectious Diseases and Microbiology. 2018, 6(2), 38-45
DOI: 10.12691/ajidm-6-2-1
Open AccessArticle

Antimicrobial Susceptibility Patterns of Escherichia coli Isolated from Olive Baboon (Papio anubis) Gut

Waititu Kenneth Kariuki1, 2, , Kimang’a Andrew Nyerere2, Kariuki Samuel3 and Obiero Jael Apondi2, 4

1Animal Sciences Department, Institute of Primate Research, Kenya

2Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology

3Center for Microbiology Research, Kenya Medical Research Institute

4Department of Reproductive Health and Biology, Institute of Primate Research

Pub. Date: August 21, 2018

Cite this paper:
Waititu Kenneth Kariuki, Kimang’a Andrew Nyerere, Kariuki Samuel and Obiero Jael Apondi. Antimicrobial Susceptibility Patterns of Escherichia coli Isolated from Olive Baboon (Papio anubis) Gut. American Journal of Infectious Diseases and Microbiology. 2018; 6(2):38-45. doi: 10.12691/ajidm-6-2-1


Background: Antimicrobial resistance is widely acknowledged as a global health problem that has resulted in devastating emerging and re-emerging conditions which are difficult to manage due to limited or unavailable intervention options. It is deepened by the fact that genes encoding for antimicrobial resistance can be transferred horizontally by mobile genetic elements. Escherichia coli is primarily a gut microbial flora in warm-blooded animals including non-human primates that can acquire any of these gene elements from other resistant bacterial strains resulting in their transmission between humans and animals. This study aimed to determine antimicrobial susceptibility of E. coli against commonly used agents as well as production of extended spectrum β-lactamases. Methods: E. coli was isolated from stool samples that were collected from sixty-two captive and sixty-two wild baboons using culture-based methods. The isolates were subjected to fourteen antimicrobial agents followed by characterization of three putative resistance genes; blaCTX-M, blaTEM and blaSHV using polymerase chain reaction. Results: E. coli isolates from both groups of animals were resistant to all antimicrobial agents except Ciprofloxacin. Prevalence of Ampicillin resistance was high in E. coli isolated from both captive (32.3%) and wild (35.5%) baboons. There was higher prevalence of ESBLs in E. coli isolated from wild (17.7%) than captive (14.5%) baboons. Conclusion: As reservoirs of ESBL producing E. coli type, baboons could play a potential role in antibiotic resistant plasmids transmission to the environment and other animals including humans.

Escherichia coli ESBL antimicrobial wild captive

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Wallensten A, Hernandez J, Ardiles K, González-Acuña D, Drobni M, Olsen B. Extended spectrum beta-lactamases detected in Escherichia coli from gulls in Stockholm, Sweden. Infect Ecol Epidemiol. 2011; 1: 7030.
[2]  Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health, Front Microbiol. 2013; 4: 258.
[3]  Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med Res. 2005; 36(6): 697-705.
[4]  Okeke IN, Aboderin OA, Byarugaba DK, Ojo KK, Opintan JA. Growing Problem of Multidrug-Resistant Enteric Pathogens in Africa. Emerg Infect Dis. 2007; 13(11): 1640-1646.
[5]  Kiiru J, Kariuki S, Goddeeris BM, Butaye P. Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. BMC Microbiol. 2012; 12: 155.
[6]  Bailey, C., & Mansfield, K. Emerging and reemerging infectious diseases of nonhuman primates in the laboratory setting. Vet Pathol. 2010; 47(3); 462-481.
[7]  Clayton JB, Danzeisen JL, Trent AM, Murphy T, Johnson TJ. Longitudinal Characterization of Escherichia coli in Healthy Captive Non-Human Primates. Front Vet Sci. 2014; 1:24.
[8]  Lugano SD, Nyerere KA, Kariuki WK, Samuel K, Joseph K, Apondi OJ., Gastrointestinal Microbial Flora in Wild and Captive Olive Baboons (Papio anubis). Am J Infect Dis Microbiol. 2018; 6(1): 30-37.
[9]  Ahmed MO, Almshawt NF, Elnageh HR. Diarrheagenic Escherichia Coli O157 from Libya: Recent Perspectives and Challenges. J Public Health Afr. 2017; 8(1).
[10]  Stedt J, Bonnedahl J, Hernandez J, McMahon BJ, Hasan B, Olsen B, et al. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 2014; 4.
[11]  Guenther S, Ewers C, Wieler LH. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Front Microbiol. 2011; 2: 246.
[12]  Goldberg TL, Gillespie TR, Rwego IB, Estoff EL, Chapman CA. Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg Infect Dis. 2008; 14(9): 1375-1382.
[13]  Rwego IB, Gillespie TR, Isabirye-Basuta G, Goldberg TL. High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J Clin Microbiol. 2008; 46(10): 3187-3191.
[14]  Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017; 17(1): 616.
[15]  Barlow M. What antimicrobial resistance has taught us about horizontal gene transfer, Methods Mol Biol 2009; 532: 397-411.
[16]  Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009; 78: 119-146.
[17]  Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother., 2011;55(11): 4943-4960.
[18]  Zervosen A, Sauvage E, Frère JM, Charlier P, Luxen A. Development of new drugs for an old target: the penicillin binding proteins. Molecules. 2012; 17(11): 12478-12505.
[19]  Bajaj P, Singh NS, Virdi JS. Escherichia coli β-Lactamases: What Really Matters. Front Microbiol. 2016; 7: 417.
[20]  Franiczek R, Sobieszczańska B, Turniak M, Kasprzykowska U, Krzyzanowska B, Jermakow K, et al. ESBL-producing Escherichia coli isolated from children with acute diarrhea antimicrobial susceptibility, adherence patterns and phylogenetic background. Adv Clin Exp Med. 2012; 21(2): 187-192.
[21]  Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Curr Issues Mol Biol. 2015; 17: 11-21.
[22]  Cantón R, González-Alba JM, Galán JC. CTX-M Enzymes: Origin and Diffusion. Front Microbiol. 2012; 3: 110.
[23]  Iyer A, Barbour E, Azhar E, ElSal- abi AA, Hassan HMA, Qadri I, et al. Transposable elements in Escherichia coli antimicrobial resistance. Adv Biosci Biotechnol. 2013; 4: 415-423.
[24]  Arpin C, Dubois V, Maugein J, Jullin J, Dutilh B, Brochet JP, … Quentin C. Clinical and Molecular Analysis of Extended-Spectrum -Lactamase-Producing Enterobacteria in the Community Setting. J Clin Microbiol. 2005; 43(10): 5048-5054.
[25]  Pitout JDD Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005; 56(1): 52-59.
[26]  Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A, Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol. 2011; 301(8): 635-641.
[27]  Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci. 2018; 5.
[28]  Pimenta AC, Fernandes R, Moreira IS. Evolution of drug resistance: insight on TEM β-lactamases structure and activity and β-lactam antibiotics’, Mini Rev Med Chem. 2014; 14(2): 111-122.
[29]  Bonnet R. ‘Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes’, Antimicrob. Agents Chemother. 2004; 48: 1-14.
[30]  Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist. 2011; 17(1): 83-97.
[31]  Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Claeys G, et al. Characterization of extended-spectrum beta-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. Microb Drug Resist. 2010; 16(2): 129-134.
[32]  Mshana SE, Imirzalioglu C, Hossain H, Hain T, Domann E, Chakraborty T. Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany. BMC Infect Dis. 2009; 9: 97.
[33]  Hunter PA, Dawson S, French GL, Goossens H, Hawkey PM, Kuijper EJ, et al. Antimicrobial-resistant pathogens in animals and man: prescribing, practices and policies. J Antimicrob Chemother. 2010; 65 (1): i3-17.
[34]  Oteo J, Cercenado E, Fernández-Romero S, Saéz D, Padilla B, Zamora E, et al. Extended-Spectrum-β-Lactamase-Producing Escherichia coli as a Cause of Pediatric Infections: Report of a Neonatal Intensive Care Unit Outbreak Due to a CTX-M-14-Producing Strain. Antimicrob Agents Chemother. 2012; 56(1): 54-58.
[35]  ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res Int. 2018.
[36]  Lynch JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother. 2013; 14(2): 199-210.
[37]  Bryce A, Hay AD, Lane IF, Thornton HV, Wootton M, Costelloe C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ. 2016; 352: i939.
[38]  Planta MB. The role of poverty in antimicrobial resistance. J Am Board Fam. Med. 2007; 20(6): 533–539.
[39]  Ghaderpour A, Ho WS, Chew LL, Bong CW, Chong VC, Thong KL, et al. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Front Microbiol. 2015; 6: 977.
[40]  CLSI. (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement, 35(3). Retrieved from
[41]  Ahmed OI, El-Hady SA, Ahmed TM, Ahmed IZ. Detection of blaSHV and blaCTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. EJMHG. 2013; 14(3): 277-283.
[42]  Xia X, Meng J, McDermott PF, Ayers S, Blickenstaff K, Tran TT, et al. Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats. Appl Environl Microbiol. 2010; 76(6): 1709-1717.
[43]  Rezai MS, Salehifar E, Rafiei A, Langaee T, Rafati M, Shafahi Ket al. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran. BioMed Res Int. 2015; 309478.
[44]  Lim KT, Yasin R, Yeo CC, Puthucheary S, Thong KL. Characterization of multidrug resistant ESBL-producing Escherichia coli isolates from hospitals in Malaysia. J. Biomed. Biotechnol. 2009; 165637.
[45]  Oliver A, Weigel LM, Rasheed JK, McGowan JE, Raney P, Tenover FC. Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother. 2002; 46(12): 3829–3836.
[46]  Pagani L, Dell’Amico E, Migliavacca R, D’Andrea MM, Giacobone E, Amicosante G, et al. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clinl Microbiol. 2003; 41(9): 4264-4269.
[47]  Bernabé KJ, Langendorf C, Ford N, Ronat JB, Murphy RA. Antimicrobial resistance in West Africa: a systematic review and meta-analysis. Int. J. Antimicrob. Agents, 2017; 50( 5): 629–639.
[48]  Doi Y, Paterson DL, Egea P, Pascual A, López-Cerero L, Navarro MD, et al. Extended-spectrum and CMY-type beta-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clin Microbiol Infect. 2010; 16(1): 33-38.
[49]  Mureithi D, Mitema E, Mapenay IM, Ozwara H, Jung’a JO. Antibiotic Resistant Escherichia Coli in Feacal of Captive Baboons Not Normally Exposed to Antibiotic. Pharmacologyonline, 2015; 3: 44-52.
[50]  Rolland RM, Hausfater G, Marshall B, Levy SB. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl Environ Microbiol. 1985; 49(4): 791-794.
[51]  Chapman CA, Gillispie TR, Goldberg TL. Primates and the Ecology of Their Infectious Diseases: How will Anthropogenic Change Affect Host-Parasite Interactions? Evol Anthropol. 2005; 14: 134-144.
[52]  Sang WK, Oundo V, Schnabel D. Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhoea in four provinces of Kenya. J Infect Dev Ctries. 2012; 6(7): 572-578.
[53]  Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc R Soc B Biol Sci. 2009; 276(1667): 2521-2530.
[54]  Williams PCM, Isaacs D, Berkley JA. Antimicrobial Resistance among Children in Sub-Saharan Africa. Lancet Infect Dis. 2018; 18(2): e33-44.