American Journal of Infectious Diseases and Microbiology
ISSN (Print): 2328-4056 ISSN (Online): 2328-4064 Website: Editor-in-chief: Maysaa El Sayed Zaki
Open Access
Journal Browser
American Journal of Infectious Diseases and Microbiology. 2016, 4(3), 61-71
DOI: 10.12691/ajidm-4-3-3
Open AccessArticle

Immunoinformatics Predication and in silico Modeling of Epitope-Based Peptide Vaccine Against virulent Newcastle Disease Viruses

Marwan Mustafa Badawi1, , Afra AbdElhamid Fadl Alla1, Salma Sleak Alam2, Wafa Aljack Mohamed3, Duaa Adil Nasr-Eldin Osman2, Samar Ali Abd Alrazig Ali2, Entissar Mohamed Elhassan Ahmed2, Abdah AbdElmonim Adam4, Ranya Omar Abdullah5 and Mohamed Ahmed Salih1

1Department of Biotechnology, Africa city of Technology- Khartoum, Sudan

2Omdurman Islamic university- Khartoum, Sudan

3Ibn Sina University - Khartoum, Sudan

4Elrazi University - Khartoum, Sudan

5ALneealin University- Khartoum, Sudan

Pub. Date: June 20, 2016

Cite this paper:
Marwan Mustafa Badawi, Afra AbdElhamid Fadl Alla, Salma Sleak Alam, Wafa Aljack Mohamed, Duaa Adil Nasr-Eldin Osman, Samar Ali Abd Alrazig Ali, Entissar Mohamed Elhassan Ahmed, Abdah AbdElmonim Adam, Ranya Omar Abdullah and Mohamed Ahmed Salih. Immunoinformatics Predication and in silico Modeling of Epitope-Based Peptide Vaccine Against virulent Newcastle Disease Viruses. American Journal of Infectious Diseases and Microbiology. 2016; 4(3):61-71. doi: 10.12691/ajidm-4-3-3


ewcastle disease virus (NDV) is negative sense single stranded RNA belongs to the Avulavirus genus of the Paramyxoviridae family which can be transmitted by inhalation or ingestion. Birds infected shed these viruses in feces as well as respiratory secretions. The aim of this study is to analyze fusion (F) protein of all virulent Newcastle strains reported in NCBI database using insilico approaches to select all possible epitopes that can be used as a therapeutic peptide vaccine. A total of 56 virulent NDV fusion protein variants retrieved from NCBI database. the conserved regions were introduced into IEDB analysis resource to predict B and T cell epitopes, as well as predicting the binding affinity of the conserved epitopes with BF2 21:01, from the predominantly expressed chicken MHC I molecule. Epitopes with high scores in both B and T cell epitopes predicting tools were suggested. Peptide vaccine against virulent NDV is strongly supersedes the conventional vaccines, as it designed to cover variant virulent mutated strains, which will reduce the recurrent outbreaks and their huge accompanied economical loss to a minimum.

newcastle disease virus (NDV) peptide vaccine Immune Epitope Database IEDB epitopes Vaccine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  Muhammad Zubair Shabbir, Siamak Zohari, Tahir Yaqub, Jawad Nazir, Muhammad Abu Bakr Shabbir, Nadia Mukhtar, Muhammad Shafee, Muhammad Sajid, Muhammad Anees, Muhammad Abbas, Muhammad Tanveer Khan, AsadAmanat Ali, Aamir Ghafoor, Abdul Ahad, Aijaz Ali Channa, Aftab Ahmad Anjum, Nazeer Hussain, Arfan Ahmad, Mohsan Ullah Goraya, Zahid Iqbal, Sohail Ahmad Khan, Hassan bin Aslam, Kiran Zehra, Muhammad UmerSohail, Waseem Yaqub, Nisar Ahmad, Mikael Berg and Muhammad Munir. Genetic diversity of Newcastle disease virus in Pakistan: a countrywide perspective. J. Virology. 2013; 10:170.
[2]  Yinfeng Kang, Minsha Feng, Xiaqiong Zhao, Xu Dai, Bin Xiang, Pei Gao, Yulian Liand Tao Ren, Newcastle disease virus infection in chicken embryonic fibroblasts but not duck embryonic fibroblasts is associated with elevated host innate immune response. J. Virology. 2016; 13:41.
[4]  Khorajiya, Sunanda Pandey, Priya D. Ghodasara, B. P. Joshi, K. S. Prajapati, D. J. Ghodasara and R. A. Mathakiya. Patho-epidemiological study on Genotype-XIII Newcastle disease virus infection in commercial vaccinated layer farms. Veterinary World. 2015; 8(3):372-381.
[5]  B. Lomniczi, E. Wehmann, J. Herczeg, A. Ballagi-Pord´any, E. F. Kaleta, O. Werner, G. Meulemans, P. H. Jorgensen, A. P. Mant´e, A. L. J. Gielkens, I. Capua, and J. Damoser. Newcastle disease outbreaks in recent years inWestern Europe were caused by an old (VI) and a novel genotype (VII). Arch Virol. 1998; 143: 49-64.
[6]  Delesa Damena Mulisa, Menbere Kidane W/Kiros, Redeat Belaineh Alemu, Melaku Sombo Keno, Alice Furaso, Alireza Heidari, Tesfaye Rufael Chibsa and Hassen Chaka Chunde. Characterization of Newcastle Disease Virus and poultry-handling practices in live poultry markets, Ethiopia. Springer Plus. 2014; 3:459.
[7]  Dong-Hun Lee1, Jung-Hoon Kwon, Jin-Yong Noh, Jae-Keun Park, Seong-Su Yuk, Tseren-Ochir Erdene-Ochir, Sang-Soep Nahm, Yong-Kuk Kwon, Sang-Won Lee, Chang-Seon Song. Viscerotropicvelogenic Newcastle disease virus replication in feathers of infected chickens. J. Vet Sci. 2016; 17(1): 115-117.
[8]  Masoumeh Firouzamandi1, Hassan Moeini, Davood Hosseini, Mohd Hair Bejo, Abdul Rahman Omar, ParvanehMehrbod, AiniIderis. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes. J Vet Sci. 2016; 17(1): 21-26.
[9]  AlñzCzeglédi, DorinaUjvári, EszterSomogyi, EniköWehmanna,
[10]  Ortrud Werner, BélaLomniczi. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Research 120. 2006; 36-48.
[11]  K. YUSOFF, M. NESBIT, H. McCARTNEY, G. MEULEMANS, D. J. ALEXANDER, M. S. COLLINS, P. T. EMMERSON AND A. C. R. SAMSON. Location of Neutralizing Epitopes on the Fusion Protein of Newcastle Disease Virus Strain Beaudette C. J. gen. Virol. 1989; 70: 3105-3109.
[12]  BEN P. H. PEETERS, OLAV S. DE LEEUW, GUUS KOCH, AND ARNO L. J. GIELKENS. Rescue of Newcastle Disease Virus from Cloned cDNA: Evidence that Cleavability of the Fusion Protein Is a Major Determinant for Virulence. J. VIROLOGY. 1999; 5001-5009.
[13]  Tamar Ben-Yedidia and Ruth Arnon, Epitope-based vaccine against influenza. Expert Rev. Vaccines. 2007; 6(6).
[14]  Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
[15]  Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2014 Oct 9. pii: gku938. [Epub ahead of print] PubMed PMID: 25300482.
[16]  Anayet Hasan, Mehjabeen Hossain and Md. Jibran Alam. A Computational Assay to Design an Epitope-Based Peptide Vaccine Against Saint Louis Encephalitis Virus. Bioinformatics and Biology Insights 2013:7 347-355.
[17]  Jens Erik Pontoppidan Larsen, Ole Lund and Morten Nielsen. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006; 2: 2.
[18]  Emini EA, Hughes JV, Perlow DS, Boger J. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836-839.
[19]  Kolaskar AS, Tongaonkar PC. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett276:172-174.
[20]  Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B. 2012. Immune epitope database analysis resource. NAR.
[21]  Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007-1017.
[22]  Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, and Nielsen M. 2008. NetMHC-3.0: Accurate web accessible predictions of Human, Mouse, and Monkey MHC class I affinities for peptides of length 8-11. NAR 36:W509-512.
[23]  Peters B, Sette A. 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132.
[24]  Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B. 2008. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2.
[25]  Kim Y, Ponomarenko J, Zhu Z, et al. Immune epitope database analysis resource. Nucleic Acids Research. 2012;40 (Web Server issue):W525-W530.
[26]  Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 4(4):e1000048.
[27]  Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics. 11:568.
[28]  Pratik Narain Srivastava, Richa Jain, Shyam Dhar Dubey, Sharad Bhatnagar, Nabeel Ahmad. Prediction of Epitope-Based Peptides for Vaccine Development from Coat Proteins GP2 and VP24 of Ebola Virus Using Immunoinformatics, International Journal of Peptide Research and Therapeutics (2016) 22:119-133.
[29]  Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., Beaver, J., Bourne, P. E. et al. (2008). Immune epitope database analysis resource (IEDB-AR).Nucleic Acids Research, 36(Web Server issue), W513-W518.
[30]  The Phyre2 web portal for protein modeling, prediction and analysis Kelley LA et al. Nature Protocols 10, 845-858 (2015).
[31]  UCSF Chimera-a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
[32]  Shen Y, Maupetit J, Derreumaux P, Tuffery P, Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction, 2014.
[33]  The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.
[34]  L.K. Wolf, New software and Websites for the Chemical Enterprise, Chemical & Engineering News 87, 31 (2009).
[35]  Bachler, B.C.; Humbert, M.; Palikuqi, B.; Siddappa, N.B.; Lakhashe, S.K.; Rasmussen, R.A.; Ruprecht, R.M. Novel biopanning strategy to identify epitopes associated with vaccine protection. J. Virol. 2013, 87, 4403-4416.
[36]  Perrie, Y.; Kirby, D.; Bramwell, V.W.; Mohammed, A.R. Recent developments in particulate-based vaccines. Recent Pat. Drug Deliv. Formul. 2007, 1, 117-129.
[37]  Black, M.; Trent, A.; Tirrell, M.; Olive, C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev. Vaccines 2010, 9, 157-173.
[38]  Thompson, A.L.; Staats, H.F. Cytokines: The future of intranasal vaccine adjuvants. Clin. Dev. Immunol. 2011.
[39]  Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488-496.
[40]  Sesardic, D. Synthetic peptide vaccines. J. Med. Microbiol. 1993, 39, 241-242.
[41]  Liu, Y.; McNevin, J.; Zhao, H.; Tebit, D.M.; Troyer, R.M.; McSweyn, M.; Ghosh, A.K.; Shriner, D.; Arts, E.J.; McElrath, M.J.; et al. Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: Fitness-balanced escape. J. Virol. 2007, 81, 12179-12188.
[42]  Kolesanova, E.F.; Sanzhakov, M.A.; Kharybin, O.N. Development of the schedule for multiple parallel ―difficult Peptide synthesis on pins. Int. J. Pept. 2013.
[43]  Epstein, J.E.; Giersing, B.; Mullen, G.; Moorthy, V.; Richie, T.L. Malaria vaccines: Are we getting closer? Curr. Opin. Mol. Ther. 2007, 9, 12-24.
[44]  Volpina, O.M.; Gelfanov, V.M.; Yarov, A.V.; Surovoy, A.Y.; Chepurkin, A.V.; Ivanov, V.T. New virus-specific T-helper epitopes of foot-and-mouth disease viral VP1 protein. FEBS Lett. 1993, 333, 175-178.
[45]  Tarradas, J.; Monso, M.; Munoz, M.; Rosell, R.; Fraile, L.; Frías, M.T.; Domingo, M.; Andreu, D.; Sobrino, F.; Ganges, L. Partial protection against classical swine fever virus elicited by dendrimeric vaccine-candidate peptides in domestic pigs. Vaccine 2011, 29, 4422-4429.
[46]  Stanekova, Z.; Kiraly, J.; Stropkovska, A.; Mikušková, T.; Mucha, V.; Kostolanský, F.; Varečková, E. Heterosubtypic protective immunity against influenza a virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol. 2011, 55, 61-67.
[47]  Oscherwitz, J.; Yu, F.; Cease, K.B. A synthetic peptide vaccine directed against the 2ss2–2ss3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. J. Immunol. 2010, 185, 3661-3668.
[48]  Solares, A.M.; Baladron, I.; Ramos, T.; Valenzuela, C.; Borbon, Z.; Fanjull, S.; Gonzalez, L.; Castillo, D.; Esmir, J.; Granadillo, M.; et al. Safety and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in women with high-grade cervical intraepithelial neoplasia: first-in-human, proof-of-concept trial. ISRN Obstet. Gynecol. 2011.
[49]  Bernhardt, S.L.; Gjertsen, M.K.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Meo, M.; Buanes, T.; Gaudernack, G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br. J. Cancer 2006, 95, 1474-1482.
[50]  Brunsvig, P.F.; Aamdal, S.; Gjertsen, M.K.; Kvalheim, G.; Markowski-Grimsrud, C.J.; Sve, I.; Dyrhaug, M.; Trachsel, S.; Møller, M.; Eriksen, J.A.; et al. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2006, 55, 1553-1564.
[51]  Brunsvig, P.F.; Kyte, J.A.; Kersten, C.; Sundstrøm, S.; Møller, M.; Nyakas, M.; Hansen, G.L.; Gaudernack, G.; Aamdal, S. Telomerase peptide vaccination in NSCLC: A phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin. Cancer Res. 2011, 17, 6847-6857.
[52]  Kyte, J.A.; Gaudernack, G.; Dueland, S.; Trachsel, S.; Julsrud, L.; Aamdal, S. Telomerase peptide vaccination combined with temozolomide: A clinical trial in stage IV melanoma patients. Clin. Cancer Res. 2011, 17, 4568-4580.
[53]  Greten, T.F.; Forner, A.; Korangy, F.; N’Kontchou, G.; Barget, N.; Ayuso, C.; Ormandy, L.A.; Manns, M.P.; Beaugrand, M.; Bruix, J. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 2010, 10, e209.
[54]  Kyte, J.A.; Trachsel, S.; Risberg, B.; Thor, S.P.; Lislerud, K.; Gaudernack, G. Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination. Cancer Immunol. Immunother. 2009, 58, 1609-1626. 25.
[55]  Spike C.A. & Lamont S.J. (1995>. - Genetic analysis of 3 loci homologous to human G9a: evidence for inkage of a class III gene with the chicken MHC. Anim. Genet., 26, 185-187.
[56]  Chen, F. et al. “Character Of Chicken Polymorphic Major Histocompatibility Complex Class II Alleles Of 3 Chinese Local Breeds”. Poultry Science 91.5 (2012): 1097-1104. Web.
[57]  Chappell P, et al. (2015) Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding. eLife 4:e05345.
[58]  Wallny H-J, et al. (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci USA 103(5):1434-1439.
[59]  Koch M, et al. (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27(6):885-899.
[60]  Walker BA, et al. (2011) The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci USA 108(20):8396-8401.
[61]  Shaw I, et al. (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178(9): 5744-5752.