American Journal of Infectious Diseases and Microbiology
ISSN (Print): 2328-4056 ISSN (Online): 2328-4064 Website: http://www.sciepub.com/journal/ajidm Editor-in-chief: Maysaa El Sayed Zaki
Open Access
Journal Browser
Go
American Journal of Infectious Diseases and Microbiology. 2013, 1(4), 75-78
DOI: 10.12691/ajidm-1-4-4
Open AccessArticle

Extended-Spectrum β-Lactamase - Producing Klebsiella pneumonia and Escherichia coli from Blood Cultures of Hospitalized Patients in Abakaliki Metropolis

E.A. Nwakaeze1, C. Anyim1, , N. Ngwu J2 and C. Nwankwo1

1Department of Applied Microbiology, Ebonyi State University Abakaliki, Nigeria

2School of Dental Therapy and Technology, Trans-Ekulu Enugu, Nigeria

Pub. Date: June 30, 2013

Cite this paper:
E.A. Nwakaeze, C. Anyim, N. Ngwu J and C. Nwankwo. Extended-Spectrum β-Lactamase - Producing Klebsiella pneumonia and Escherichia coli from Blood Cultures of Hospitalized Patients in Abakaliki Metropolis. American Journal of Infectious Diseases and Microbiology. 2013; 1(4):75-78. doi: 10.12691/ajidm-1-4-4

Abstract

The incidence of antibiotic resistance in extended-spectrum β-lactamase (ESBL)–producing Escherichia coli and Klebsiella pneumoniae has obviously increased in recent era. Twelve strains of Gram-negative bacteria comprising of 6 Escherichia coli and 6 Klebsiella pneumoniae were isolated from blood samples of hospitalized patients in Federal Teaching Hospital Abakaliki I (FETHA I). The extended spectrum β-lactamases detection was ascertained using double disc diffusion methods. Identification of organisms was done using appropriate microbiological technique. Antibiotics susceptibility test was carried out on Mueller-Hinton agar using the disc diffusion method. Ofloxacin and cefoxitin were 83.3% active against E. coli, followed by sulphamathroxazole with 66.7% activity. While ofloxacin was 100% active against K. pneumoniae, followed by cefoxitin and tetracycline with 83.3% activity. Amikacin and ciprofloxacin showed the highest resistance against E. coli and K. pneumoniae. This resistance is associated with extended-spectrum β-lactamases (ESBL) production which was detected in K. pneumoniae and E. coli. ESBL production was observed in 80% of Gram negative bacilli. ESBL-producing organisms have significant impact on several important clinical outcomes and hence clinical microbiology laboratories should take into account the varying epidemiology of ESBL producers in order to improve treatment strategies and expand therapeutic options.

Keywords:
ESBL antibiotic resistance blood cultures hospitalized patients gram-negative bacteria

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Paterson, D. L., Bonomo, R. A. Extended-spectrum b-lactamases: A clinical update. Clin Microbiol Rev., 18: 657-686, 2005.
 
[2]  Sturenburg, E., Mack, D. Extended-spectrum β-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J. Infect., 47: 273-295, 2003.
 
[3]  Tenover, F. C., Kalsi, R. K., Williams, P. P., Carey, R. B., Stocker, S., Lonsway, D., Rasheed, J. K., Biddle, J. W., McGowan, J. E., Hanna, B. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg. Infect. Dis., 12: 1209-1213, 2006.
 
[4]  Sanders, C.C., Barry, A.L., Washington, J.A., Shubert, C., Moland, E.S., Traczewski, M.M., Knapp, C., Mulder, R. Detection of extended-spectrum b-lactamase-producing members of the family Enterobacteriaceae with the Vitek ESBL test. J. Clin. Microbiol. 34: 2997-3001, 1996.
 
[5]  Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 14: 933-951, 2001.
 
[6]  Shah, A.A., Hasan, F., Ahmed, S., Hameed, A. Extended-spectrum beta-lactamases (ESbLs): Characterization, epidemiology and detection. Crit. Rev. Microbiol. 30: 25-32, 2004.
 
[7]  NCCLS, National Committee for Clinical Laboratory Standards, NCCLS. Performance standards for antimicrobial disk susceptibility testing. 7th ed. Approved standard, M2-A7, 2001.
 
[8]  Harish, B.N., Menezes, G.A., Shekatkar, S. and Parija, S.C. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae from blood culture Journal of Medical Microbiology, 1: 999-1000, 2007.
 
[9]  Lucet, J.C., Decre, D., Fichelle, A. Control of a prolonged outbreak of extended-spectrum beta-lactamase-producing enterobacteriaceae in a university hospital. Clin. Infect. Dis. 29:1411-1418, 1999.
 
[10]  Paterson, D.L., Ko, W.C., Von-Gottberg, A. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin. Infect. Dis., 39: 31-37, 2004.
 
[11]  Asensio, A., Oliver, A., Gonzalez-Diego, P. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin. Infect. Dis., 30: 55-60, 2005
 
[12]  Gardam, M.A., Burrows, L.L., Kus, J.V. Is surveillance for multidrug-resistant enterobacteriaceae an effective infection control strategy in the absence of an outbreak? J. Infect. Dis., 186: 1754-1760, 2002.
 
[13]  Thouverez, M., Talon, D., Bertrand, X. Control of Enterobacteriaceae producing extended-spectrum beta-lactamase in intensive care unit. Infect. Control Hosp. Epidemiol., 25:838-841, 2004.
 
[14]  Cheesbrough, M. District laboratory practice in tropical countries, part 2. Cambridge University Press, Cambridge, UK. PP. 137-150, 2006.
 
[15]  Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M. Antibiotic susceptibility testing by a standardized single disk methodAm. J. Clin. Pathol. 45(4): 493-496, 1996.
 
[16]  Ramseh, N., Sumahi, C.S., Balasubramanian, V., Palaniappan, K.R., Kannan, V.R. Urinary tract infection and antimicrobial susceptibility pattern of extended spectrum of beta lactamase producing clinical isolates. Advances in Biological Research, 2(5-6): 78-82, 2008.
 
[17]  Jones, R.N., Kugler, K.C., Pfaller, M.A., Winokur, P.L. Characteristics of pathogens causing urinary tract infections in hospitals in North America: results from the SENTRY Antimicrobial Surveillance Program, 1997. Diagn. Microbiol. Infect. Dis., 35: 55-63, 1999.
 
[18]  Dashti, A.A., West, P., Paton, R., Amyes, S.G.B. Characterization of extended-spectrum b-lactamase (ESBL)-producing Kuwait and UK strains identified by the Vitek system, and subsequent comparison of the Vitek system with other commercial ESBL-testing systems using these strains, Journal of Medical Microbiology, 55: 417-421, 2006.
 
[19]  Meyer, K.S., Urban, C., Eagen, J.A., Berger, B.J., Rahal, J.J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann. Intern. Med., 119:353-8, 1993.
 
[20]  Ho, P.L.,Chan, W.M., Tsang, K.W., Wong, S.S., Young K. Bacteremia caused by Escherichia coli producing extended-spectrum beta-lactamase: a case-control study of risk factors and outcomes. Scand J. Infect. Dis., 34: 567-573, 2002.
 
[21]  Xiong, Z., Zhu, D., Wang, F., Zhang, Y., Okamoto, R., Inoue, M. Investigation of extended-spectrum beta-lactamase in Klebsiellae pneumoniae and Escherichia coli from China. Diagn. Microbiol. Infect. Dis., 44: 195-200, 2002.
 
[22]  Jain, A., Roy, I., Gupta, M.K., Kumar, M., Agarwal, S.K. Prevalence of extended-spectrum beta-lactamase-producing Gram-negative bacteria in septicaemic neonates in a tertiary care hospital. J. Med. Microbiol., 52: 421-425, 2003.
 
[23]  Chiew, Y.F. Detection of extended-spectrum β-lactamase in Singapore routine clinical microbiology laboratory. J. Hosp. 56: 328-329, 2004.
 
[24]  Ben-Ami, R., Schwaber, M.J., Navon-Venezia, S., Schwartz, D., Giladi, M., Chmelnitsky, I., Leavitt, A., Carmeli, Y. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin. Infect. Dis., 42:925-934, 2006.
 
[25]  Zaki, M.S. Extended spectrum β-lactamases among gram-negative bacteria from an Egyptian pediatric hospital: A two-year experience. J. Infect. Dev. Ctries, 1(3): 269-274, 2007.
 
[26]  Iroha, I.R., Oji, A.E., Afiukwa, T.N., Nwuzo, A.C., Ejikeugwu, P.C. Extended spectrum beta lactamases mediated resistance to antibiotics among Klebsiella pneumoniae in Enugu Metropolis. Macedonian Journal of Medical Sciences, 15: 2(3):196-199, 2009.
 
[27]  Narayanaswamy, A. and Mallika, M. prevalence and susceptibility of extended spectrum beta-lactamases in urinary isolates of Escherichia coli in a tertiary care hospital, Chennai-South India. Internet Journal of Medical Update, 6(1): 39-43, 2011.
 
[28]  Coudron, P.E., Hanson, N.D., Climo, M.W. Occurrence of extended-spectrum and AmpC beta-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC beta-lactamases. J. Clin. Microbiol. 41: 772-777, 2003.
 
[29]  Wu, T.L., Siu, L.K. and Su, L.H. Outer membrane protein change combined with co-existing TEM-1 and SHV-1 beta-lactamases lead to false identification of ESBL-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 47: 755-761, 2001.