American Journal of Hypertension Research
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: Editor-in-chief: Vasilios Kotsis
Open Access
Journal Browser
American Journal of Hypertension Research. 2013, 1(1), 17-22
DOI: 10.12691/ajhr-1-1-4
Open AccessArticle

Association of NOS3 and HIF1α Gene Polymorphisms with the Susceptibility of Broiler Chickens to Develop Hypoxic Pulmonary Hypertension

Juana MoncaleanoVega1, , Fernando Ariza1 and Aureliano Hernández2

1Laboratory of Animal Cytogenetics and Molecular Genetics, Escuela de Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá

2Laboratory of Morphophysiology, Escuela de Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá

Pub. Date: December 01, 2013

Cite this paper:
Juana MoncaleanoVega, Fernando Ariza and Aureliano Hernández. Association of NOS3 and HIF1α Gene Polymorphisms with the Susceptibility of Broiler Chickens to Develop Hypoxic Pulmonary Hypertension. American Journal of Hypertension Research. 2013; 1(1):17-22. doi: 10.12691/ajhr-1-1-4


A genetic association between single nucleotide polymorphisms (SNPs) and pulmonary hypertension syndrome (PHS) was established in a commercial population of broiler chickens. The associated SNPs were found in the NOS3 and HIF1α genes (LOD > 6; p < 0.001). The SNPs in the NOS3 gene interfere with its trans-activation and transcriptional activation activities under natural hypobaric hypoxia conditions and are located in a consensus sequence that is called the hypoxia response element (HRE). SNPs located in the HIF1α gene could act as alternative cryptic splicing sites in intron six, which may stimulate non-sense mediated early decay (NMD) of the primary transcript. A fragment of intron 3 of the EDN1 gene was also evaluated, but the polymorphisms found were not associated with PHS (lod < 6; p > 0.001). However, further studies on the regulatory transcription sequences of EDN1 are recommended. The findings of this study indicate that intronic sequences should be included when searching for polymorphisms that produce physiological changes. Introns have transcriptional regulatory sequences or post-transcriptional control signals, which are known as cis- and trans-activation regulatory elements and are able to alter the physiological processes of hypoxia adaptation when modified. Based on these findings, it can be concluded that the inheritance pattern of PHS is autosomal overdominant and has deleterious effects that are characterized by higher penetrance in heterozygous than in homozygous animals, which prevent broiler chickens from being able to adapt to high altitudes.

cis and trans-activation regulatory elements deleterious effect penetrance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Burton, R. R., E. L. Besch, and A. H. Smith. 1967. Effect of chronic hypoxia on the pulmonary arterial blood pressure of the chicken. Am. J. Physiol. 214 (6):1438-1444.
[2]  Cueva, S., H. Sillau, A. Valenzuela, and P. H. Ploog. 1974. High altitude induced pulmonary hypertension and right heart failure in broiler chickens. Res. Vet. Sci. 16(6):370-374.
[3]  Moncaleano, J., F. Ariza, and A. Hernández 2011. Síndrome de hipertensión pulmonar ¿un origen genético en pollos de engorde? [Pulmonary hypertension syndrome: A genetic origin in broilers?] Revista Orinoquia 15(1):79-89.
[4]  Mejia G. 1982. Influencia del frío en la ascitis de origen hipóxico en los pollos de engorde [Effect of cold in ascites in broilers of hypoxic origin]. Thesis. Escuela de Medicina Veterinaria y Zootecnia. Universidad Nacional de Colombia. Bogotá Campus.
[5]  Pan, J. Q., J. C. Li, W. D. Sun, and X. L. Wang. 2005. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperatures. British Poultry Science 46:374-381.
[6]  Padkel, A., J. A. M. Van Arendonk, A. L. J. Vereijken, and H. Bovenhuis. 2005. Genetic parameters of ascites-related traits in broilers: effect of cold and normal temperature conditions. British Poultry Science 46(1):335-42.
[7]  Hu, C-J., Y-L. Wang, L. A. Chodosh, B. Keith, and M. C. Simon. 2003. Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2 α in Hypoxic Gene Regulation. Molecular and Cellular Biology 23(24):9361–9374.
[8]  Semenza, L. G. 2004. O2-regulated gene expression: transcriptional control of cardiorespiratory by HIF-1. J. Appl. Physiol. 96:1173-1177.
[9]  Smith, T. G., P. A. Robbins, and P. J. Ratcliffe. 2008. The human side of hypoxia-inducible factor. British Journal of Haematology 141:325-334.
[10]  Tan, X., S-H. Hu, and X-L. WANG. 2007. Possible role of nitric oxide in the pathogenesis of pulmonary hypertension in broilers: a synopsis. Avian Pathology 36(4):261-267.
[11]  Gómez, R. A. P. 2008. Regulación de la expresión de la endotelina 1 y su receptor ETA y de la sintasa de óxido nítrico en pulmones de pollo de engorde sanos y con hipertensión arterial pulmonar por hipoxia hipobárica [Regulation of the expression of endothelin 1 and its ETA receptor and nitric oxide synthase in the lungs of non-hypertensive broilers with pulmonary hypertension hypobaric hypoxia]. Escuela de Medicina Veterinaria y Zootecnia. Doctorate in Animal Health Science tesis. Universidad Nacional de Colombia, Bogotá Campus.
[12]  Catron, T., M. A. Mendiola, S. M. Smith, J. Born, and M. K. Walker. 2001. Hypoxia regulates avian cardiac Arnt and HIF-1α mRNA expression. Biochemical and Biophysical Research communications 282:602-607.
[13]  Areiza, R. R. A. 2010. Posible papel del grado de vascularización pulmonar en la resistencia/ susceptibilidad a la hipertensión pulmonar en una estirpe comercial de pollo de engorde [Possible role of degree of pulmonary vascularization in resistance/ susceptibility to pulmonary hypertension in a commercial strain of broilers]. Escuela de Medicina Veterinaria y Zootecnia. Doctoral in Animal Health Science thesis. Universidad Nacional de Colombia, Bogotá Campus.
[14]  Gomez, A. P., A. Moreno, P. Iglesias, P. Coral, and A. Hernandez. 2007. Endothelin 1, its Endothelin type A receptor, connective tissue growth factor platelet growth factor and adrenomedullin expression in longs of pulmonary hypertensive and nonhypertensive chickens. Poultry Science 86:909-916.
[15]  Gomez AP, Moreno MJ, Baldrich RM, Hernández A. Endothelin-1 molecular ribonucleic acid expression in pulmonary hypertensive and nonhypertensive chickens. Poult Sci 2008; 87:1395-1401.
[16]  Groenendijk B. C. W., Stekelenburg-Vos S., Vennemann P., Wladimiroff J. W., Nieuwstadt F. T. M., Lindken R., Westerweel J., Hierck B., Ursem N. T. C., Poelmann R. E. 2008. The endothelin-1 pathway and the development of cardiovascular defects in the haemodynamically challenged chicken embryo. Journal of Vascular Research 45: 54-68.
[18]  Closter, A. M., P. Van As, M. A. M. Groenen, A. L. J. Vereijken, J. A. M. Van Arendonk, and H. Bovenhuis. 2009. Genetic and phenotypic relationships between blood gas parameters and ascites-related traits in broilers. Poultry Science 88:483–490.
[19]  Areiza, R. A., P. C. Rivas, and A. Hernández. 2011. A quantitative study of the pulmonary vascular bed and pulmonary weight: body weight ratio in chickens exposed to relative normoxia and chronic hypobaric hypoxia. J. Poult. Sci. 48(4):267-274.
[20]  Aljanabi, M. S., and I. Martinez. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-techniques. Nucleic acids research 25(22):4692-4693.
[21]  http://
[22]  Scheffield, V. C., J. S. Beck, A. E. Kwitek, D. W. Sandstrom, and E. M. Stone. 1993. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 16:325-332.
[23]  Taylor, G. R. 1997. Laboratory methods for the detection of mutations and polymorphisms in AND. Pages 317. CRC Press. New York.
[24]  Wyszynski, D. F. 1998. La epidemiología genética: disciplina científica en expansión [Genetic epidemiology: an expanding scientific discipline]. Pan. Am. J. Public. Heal. 3(1):26-34.
[25]  Iniesta, R., E. Guino, and V. Moreno. 2005. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos [Statistical analysis of genetic polymorphisms in epidemiological studies]. Gac. Sanit. 19(4):333-41.
[26]  Sevilla, S. D. 2007. Metodología de los estudios de asociación genética [Methodology for genetic association studies]. Insuficiencia Cardiaca 2(3):111-114.
[27]  Boehnke, LL. and Abecasis. 2006. Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am. J. Hum. Genet. 78:778-92.
[28]  Ewing, B., L. D. Hillier, M. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8:175-185.
[29]  Searles, C. D. 2006. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am. J. Physiol. Cell Physiol. 291:C803-C816.
[30]  Caramelo C., D. J. J. Peña, A. Castilla, S. Justo, A. J. De Solis, F. Neira, S. Peñate, and F. R. Gonzales-Pacheco. 2006. Respuesta a la hipoxia. Un mecanismo sistemático basado en el control de la expresión genética [Response to hypoxia: A systematic mechanism based on the control of gene expression]. MEDICINA (Buenos Aires) 66:155-164.
[31]  Moreno de Sandino, M., and A. Hernandez. 2003. Nitric oxide synthase expression in the endothelium of pulmonary arterioles innormal and pulmonary hypertension chicken subjected to chronic hypobaric hypoxia. Avian Diseases 47(4):1291-1297.
[32]  Jaramillo, P. C., C. Lanas, F. Lanas, and L. A. Salazar. 2010. Polymorphisms of the NOS3 gene in Southern Chilean subjects with coronary artery disease and control. Clinica Chimica Acta 411:258-262.
[33]  Wang, X. L., and J. Wang. 2000. Endothelial nitric oxide synthase gene sequence variations and vascular disease. Molecular Genetics and Metabolism 70:241-251.
[34]  Jemaa, R., A. S. Ben, A. Kallel, M. Feki, M. Elasmi, H. S. Taieb, H. Sanhaji, S. Omar, and N. Kaabachi 2009. Association of a 27-bp repeat polymorphism in intron 4 of endothelial constitutive nitric oxide synthase gene with hypertension in a Tunisian population. Clinical Biochemistry 42:852-856.
[35]  Wang, G-S., and T. A. Cooper. 2007. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Reviews 8:749-761.
[36]  Pagani, F., and F. E. Baralle. 2004. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Reviews 5:389-396.
[37]  Baralle, D., A. Lucassen, and E. Buratti. 2009. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. European Molecular Biology Organization reports 10(8):810-816.
[38]  Huang, Y., R. P. Hickey, J. L. Yeh, D. Liu, A. Dadak, L. Young, R. S. Johnson, and J. F. Giordano. 2004. Cardiac myocytes-specific HIF-1α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. The FASEB journal (4):1510-1531.
[39]  Shohet, R. V., and J. A. Garcia. 2007. Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J. Mol. Med. 85:1309–1315.
[40]  Stroka, D. M., T. Burkhardt, I. Desbaillets, R. H. Wenger, D. A. H. Neil, C. Bauer, M. Gassmann, and D. Candinas. 2001. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. The FASEB Journal (15):2245-2453.
[41]  Li, Z., Z. Lai, K. Ya, D. Fang, H. Y. Wing, Y. Lei, and Z. Q. Ming. 2008. Correlation between the expression of divalent metal transporter 1 and the content of hypoxia-inducible factor-1 in hypoxic HepG2 cells. J. Cell. Mol. Med. 12(2):569-579.
[42]  Garcia-Blanco, M. A., A. P. Baraniak, and E. L. Lasda. 2004. Alternative splicing in disease and therapy. Nature Biotechnology 22:535-546.
[43]  Mattick J. S. 2010. Los intrones [Introns]. Investigación y Ciencia. Topic 59. 1st Quarter 2010:13-19.