American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2013, 1(4), 70-76
DOI: 10.12691/ajfst-1-4-2
Open AccessArticle

Grinding Studies of Mango Ginger: Mathematical Modelling of Particle Size Distribution and Energy Consumption

Thirupathihalli Pandurangappa Krishna Murthy1, and Balaraman Manohar2

1Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India

2Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysore, India

Pub. Date: November 26, 2013

Cite this paper:
Thirupathihalli Pandurangappa Krishna Murthy and Balaraman Manohar. Grinding Studies of Mango Ginger: Mathematical Modelling of Particle Size Distribution and Energy Consumption. American Journal of Food Science and Technology. 2013; 1(4):70-76. doi: 10.12691/ajfst-1-4-2


Mango ginger was ground in hammer mill with three different classifying screens and pin mill to study the particle size distribution and energy consumption. The Rosin-Rammler Bennet (RRB) model fitted well the particle size distribution data over the entire range of the size distribution for grinding in both hammer mill and pin mill with high coefficient of determination (R2) and low values of residual sum square, root mean square error and Chi-square. Relationship between RRB model parameters with hammer mill screen size was obtained with high R2. All the three classical models such as Rittinger’s, Kick’s and Bond’s law were found suitable to explain the energy consumption for grinding. Energy consumption increased exponentially with decrease in classifying screen size of hammer mill. The Work index for grinding increased with increase in size reduction ratios and were in the range of 0.075-0.58 kW/kg.

mango ginger hammer mill pin mill particle size distribution specific energy consumption work index

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 1


[1]  Sasikumar, B, 2005. Genetic resources of curcuma: diversity, characterization and utilization. Plant Gen. Res., 3: 230-251.
[2]  Policegoudra, R.S., S.M. Aradhya and L. Singh, 2001. Mango ginger (Curcuma amada Roxb.)-A promising spice for photochemical and biological activities. J. Biosci., 36: 739-748.
[3]  Golap, S. G and C. Bandyopadhyaya, 1984. Characterization of mango-like aroma in Curcuma amada Roxb. J. Agric. Food Chem., 32: 57-59.
[4]  Rao, A. S., B. Rajanikanth and R. Seshadri, 1989. Volatile aroma components of Curcuma amada Roxb. J. Agric. Food Chem., 37: 740-743.
[5]  Prakash, D., S. Suri., G. Upadhyay and B. Singh, 2007. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Food Sci. Nutri. Int. J., 58: 18-28.
[6]  Policegoudra, R.S., K. Abiraj., D. Channe Gowda and S. M. Aradhya, 2007. Isolation and characterization of antioxidant and antibacterial compound from mango ginger (Curcuma amada Roxb.) rhizome. J. Chrom. B., 852: 40-48.
[7]  Policegoudra, R. S., S. Divakar and S. M. Aradhya, 2007. Identification of Difurocumenonol, a new antimicrobial compound isolated from mango ginger (Curcuma amada Roxb.) rhizome. J. Appl. Micro., 102: 1594-1602.
[8]  Singh, G., O. P. Singh and S. Maurya, 2002. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog. Crystal Growth Charac., 45: 75-81.
[9]  Mujumdar, A. M., D. G. Naik., C.N. Dandge and H. M. Puntambekar, 2000. Anti-inflammatory activity of Curcuma amada Roxb. in albino rats. Ind. J. Pharm., 32: 375-377.
[10]  Policegoudra, R. S and S. M. Aradhya, 2008. Structure and biochemical properties of starch from an unconventional source - a mango ginger (Curcuma amada Roxb.) rhizome. J. Food Hydro., 22: 513-519.
[11]  Dryzmala, Z. 1993. Industrial briquetting-fundamentals and methods. Stud. Mech. Engine., PWN-Polish Scientific Publishers, Waraszawa, Pp. 13.
[12]  Baitra, V. S. P., A. R. Womac., N. Chevanan., P. I. Miu., I. Igathinathane., S. Sokhansanj and D. R. Smith, 2009. Direct mechanical energy measures of hammer mill comminution of switch grass, wheat straw, and corn stover and analysis of their particle size distributions. Powder Technol., 193: 32-45.
[13]  Manohar, B and B. S. Sridhar, 2001. Size and shape characterization of conventionally ground turmeric (Curcuma domestica) particles. Powder Technol., 120: 292-297.
[14]  Baitra, V. S. P., A. R. Womac., Y. T. Yang., P. I. Miu., I. Igathinathane and S.Sokhansanj, 2009b. Mathematical model parameters for describing the particle size spectra of knife-milled corn stover. Biosyst. Engin, 104: 369-383.
[15]  Macias-Garcia, A., M. Cuerda-Correa and M. A. Diaz-Diez, 2004. Application of Rosin-Rammler and Gauding-Schuhmann models to the particle size distribution analysis of agglomerated cork. Materials Char., 52: 159-164.
[16]  Ghorbani, Z. A., A. Masoumi and A. Hemmat, 2010. Specific energy consumption for reducing the size of alfalfa chops using a hammer mill. Biosyst. Engin., 105: 34-40.
[17]  Mohsenin, N. N, 1986. Physical properties of plant and animal materials. Gordon and Breach Science publishers, New York.
[18]  Lopo, P, 2002. The right grinding solution for you: roll, horizontal or vertical. Food Manag., 53: 23-26.
[19]  Fang, Q., I. Boloni., E. Haque and G. K. Spillman, 1997. Comparison of energy efficiency between a roller mill and a hammer mill. Trans. Amer. Soci. Agric. Engin., 13: 631-635.
[20]  Fellows, P. J, 2000. Food processing Technology-Principles and Practice. Woodhead Publishing, Cambridge, pp.13-14.
[21]  Katti, S.V., S. Kumar and N. G. Mallesh, 2008. Studies on the effect of milling finger millet in different pulverisers on physic-chemical properties of the flour. J. Food Sci. Technol., 45: 398-405.
[22]  S. G. Walde, K. Balaswamy, V. Velu and D. G. Rao, 2002. Microwave drying characteristics of wheat. J. Food Engin., 55: 271-276.
[23]  A. Cakkaravarthi., R. G. Math., S. G. Walde and D. G. Rao, 1993. Grinding characteristics of carrots (Dacus Carota L.). J. Food Engin., 20: 381-389.
[24]  Walde, S. G., K. Balaswamy., R. Shivaswamy., A. Chakkaravarthi and D. G. Rao, 1997. Microwave drying and grinding characteristics of gum karaya (sterculia urens). J. Food Engin., 31: 305-313.
[25]  Velu, V., A. Nagendrer., P. G. P. Rao and D. G. Rao, 2006. Dry milling characteristics of microwave dried maize grains. J. Food Engin., 74: 30-36.
[26]  Murthy, C. T. 2001. Cryogenic Size reduction and Engineering properties of black pepper,” PhD thesis, University of Mysore, Mysore.
[27]  Ragavendra , S.N., S.R. Ramachandra Swamy., N. K. Rastogi., K. S. M. S. Raghavarao., S. Kumar and R. N. Tharanathan, 2006. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J. Food Engin., 72: 281-286.
[28]  Goswami and Manish Singh, 2003. Role of feed rate and temperature in attrition grinding of cumin. J. Food Engin., 59: 285-290.
[29]  Rosin, P and E. Rammler , 1933.The laws governing the fineness of powdered coal. J. Inst. Fuel., 7: 29-36.
[30]  Bennette, J. G, 1936. Broken coal. J. Inst. Fuel., 10: 22-39.
[31]  Harris, C.C. 1968. The application of size distribution equation to multi-event communition processes. Trans. SME/AIME., 241: 343-358.
[32]  Schuhmann, R. 1940. American Institute of Mining and Metallurgical Engineers. Technical publication, New York., pp.1189.
[33]  Prasher, P.L. 1987. Crushing and Grinding Process Handbook. Wiley, New York.
[34]  Earle. R.L. Unit operations in Food Processing. Pergamon, Oxford.
[35]  Sharma, P., A. Chakkaravarthi., V. Singh and R. Subramanian, 2008. Grinding Characteristics and batter quality of rice in different wet grinding systems. J. Food Engin., 88: 499-506.
[36]  Allais, I., R. Edoura-Gaena., J. Gros and G. Trystram, 2006. Influence of egg type, pressure and mode of incorporation on density and bubble distribution of a lady finger batter. J. Food Engin., 74: 198-210.
[37]  Craig, R.F, 2004. Craig's Soil Mechanics. Spon Press, London.
[38]  Folk, R. L, 1974. Petrology of Sedimentary Rocks. Austin, TX : Hemphil Publishing Co.
[39]  CFI, 1982. The CFI Guide of Material Selection for the Production of Quality Blends. Canadian Fertilizer Institute, Ottawa, Ontario, Canada.
[40]  Perfect, E and Q. Xu, 1998. Improved parameterization of fertilizer particle size distribution. AOAC Int. J., 81: 935-942.
[41]  Hinds, W. C, 1992. Properties, Behaviour and Measurement of Airborne Particles. Aerosol Technology- John Wiely and Sons, New York.