American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2013, 1(3), 60-66
DOI: 10.12691/ajfst-1-3-9
Open AccessArticle

Hydrodynamic Properties of Whole Arabic Gum

Martin A. Masuelli1, 2,

1Instituto de Física Aplicada, CONICET

2Cátedra de Química Física II, Área de Química Física, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina

Pub. Date: November 19, 2013

Cite this paper:
Martin A. Masuelli. Hydrodynamic Properties of Whole Arabic Gum. American Journal of Food Science and Technology. 2013; 1(3):60-66. doi: 10.12691/ajfst-1-3-9


The most economically important of the hydrodynamic properties of a material are viscosity and density, which allow determining the intrinsic viscosity of raw materials used in the food industry. They serve as an indirect measure of molecular weight (M), hydrodynamic radius (RH), number of Simha, (ν(P)), Perrin parameter (P); hydration value (δ), Scheraga-Mandelkern parameter (β), and Flory parameters (0 and P0). Normally, these parameters are reported at a temperature of 25ºC, which limits their use at different temperatures. This work studies the temperature-dependence of whole arabic gum (WAG) in aqueous solution, finding that in aqueous solution, this biopolymer presents a random coil shape with ν(p) ≈ 2.55. The behavior of WAG in this system indicates that it behaves as a colloidal particle that tends to compact as temperature increases (RH decrease). The M of WAG calculated here are 760000 g/mol. The Mark-Houwink-Sakurada equation constants, a and k, for WAG in water solvent-temperature systems have been reported already, where the value of a ranges from 0.5496 to 0.5085 within a temperature range of 20 to 50°C.

whole arabic gum hydrodynamic parameters Mark-Houwink-Sakurada parameters temperature

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Seigler, D. S., Phytochemistry of Acacia-sensu lato. Biochemical Systematics and Ecology, 31, 845-873, December 2002.
[2]  Baldwin, T. C., Quah, P. E., Menzies A. R., A serotaxonomic study of Acacia gum exudates. Phytochemistry, 50, 599-606, February 1999.
[3]  Savary, G., Hucher, N., Bernadi, E., Grisel, M., Malhiac C., Relationship between the emulsifying properties of Acacia gums and the retention and diffusion of aroma compounds. Food Hydrocolloids, 24,178-183, September 2009.
[4]  Ray, C., Apurba K., Bird, P. B., Iacobucci, G. A., Clark Jr, B., Functionality of gum arabic. Fractionation, characterization and evaluation of gum fractions in citrus oil emulsions and model beverages. Food Hydrocolloids, 9 (2), 123-131, August 1995.
[5]  Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocolloids, 15, 533-42, July 2001.
[6]  Dickinson, Eric. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25-39, November 2001.
[7]  Kim, Y. D., Morr, C. V., Schenz, T. W., Microencapsulation Properties of Gum Arabic and Several Food Proteins: Liquid Orange Oil Emulsion Particles. J. Agric. Food Chemistry, 44, 1308-1313, March 1996.
[8]  Renard, D., Robert, P., Lavenant, L., Melcion, D., Popineau, Y., Gueguen, J., Duclairoir, C., Nakache, E., Sanchez, C., Schmitt, C. Biopolymeric colloidal carriers for encapsulation or controlled release applications. International Journal of Pharmaceutics, 242, 163-166, August 2002.
[9]  Beyer, M., Reichert, J., Heurich, E., Jandta, K., D., Sigusch, B.W., Pectin, alginate and gum arabic polymers reduce citric acid erosion effects on human enamel. Dental Materials, 26 (9), 831-839, April 2010.
[10]  Ali, B. H., Ziada, A., Blunden, G., Biological effects of gum arabic: A review of some recent research. Food and Chemical Toxicology, 47, 1-8, July 2008.
[11]  Nasir, O., Artun, F., Wang, K., Rexhepaj, R., Föller, M., Ebrahim, A., Kempe, D. S., Biswas, R., Bhandaru, M., Walter, M., Mohebbi, N., Wagner, C. A., Saeed, A. M., Lang, F., Downregulation of Mouse Intestinal Na+-coupled Glucose Transporter SGLT1 by Gum Arabic (Acacia Senegal). Cell Physiol. Biochem., 25, 203-210, March 2010.
[12]  Lim, S., Choi, Y. S., Kang, D. G., Song, Y. H., Cha, H. J., The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials, 31, 3715-3722, May 2010.
[13]  Ben-Zion, O., Nussinovitch, A., Physical properties of hydrocolloid wet glues. Food Hydrocolloids, 11 (4), 429-442, October 1997.
[14]  Cochrane, H., Adhesives and sealants. Industrial Minerals and Their Uses, 1996, 275-352.
[15]  Bulatovic, S.M., Use of organic polymers in the flotation of polymetallic ores: A Review. Minerals Engineering, 12 (4), 341-354, April 1999.
[16]  Herrera Urbina, R. Recent developments and advances in formulations and applications of chemical reagents used in froth flotation. Mineral Processing and Extractive Metallurgy Review, 24 (2), 139-182, June 2003.
[17]  Islam, A. M., Phillips, G. O., Sljivo, A., Snowden, M. J., Williams, P.A., A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloids, 11 (4), 493-505, May 1997.
[18]  Verbeken, D.; Dierckx, S.; Dewettinck, K. Exudate gums: occurrence, production, and applications. Appl. Microbiol. Biotechnol., 63,10-21, June 2003.
[19]  Tischer, C. A., Gorin, P. A. J., Iacomini, M. The free reducing oligosaccharides of arabic gum: aids for structural assignmens in the polysaccharide. Carbohydrate Polymers, 47, 151-158, December 2000.
[20]  Leon de Pinto, G., Martinez, M., Sanabria, L., Structural features of the polysaccharides gum of Acacia glomerosa. Food Hydrocolloids, 15, 461-467, March 2001.
[21]  Mhinzi, G.S., Mghweno, L.A.R. Buchweishaija, J. Intra-species variation of the properties of gum exudates from two Acacia species of the series Gummiferae. Food Chemistry, 107, 1407-1412, September 2007.
[22]  Yebeyen, D., Lemenih, M., Feleke, S., Characteristics and quality of gum arabic from naturally grown Acacia senegal (Linne) Willd. trees in the Central Rift Valley of Ethiopia. Food Hydrocolloids, 23, 175-180, December 2009.
[23]  Al-Assaf, S., Phillips, G. O., Williams, P. A., Studies on acacia exudate gums. Part I: the molecular weight of Acacia senegal gum exudates. Food Hydrocolloids, 19, 647-660, September 2004.
[24]  Al-Assaf, S., Phillips, G. O., Williams, P. A., Studies on Acacia exudate gums: part II. Molecular weight comparison of the Vulgares and Gummiferae series of Acacia gums. Food Hydrocolloids, 19, 661-667, September 2004.
[25]  Elnour, A. A., Elsayed, M. E. O., Ishag, K. E. A., Abdalla, A. A., Adam, H. E., Physicochemical Properties of Acacia Polyacantha Gum. Conference on International Research on Food Security, Natural Resource Management and Rural Development, Tropentag 2009, University of Hamburg, October 6-8, 2009.
[26]  Sanchez, C., Renard, D., Robert, P., Schmitt, C., Lefebvre, J., Structure and rheological properties of acacia gum dispersions. Food Hydrocolloids, 16, 257-267, September 2001.
[27]  Cozic, C., Picton, L., Garda, M.-R., Marlhoux, F., Le Cerf, D., Analysis of acacia: Study of degradation and water desorption processes. Food Hydrocolloids, 23, 1930-1934, October 2009.
[28]  Renard, D., Lavenant-Gourgeon, L., Ralet, M.-C., Sanchez, C., Acacia senegal Gum: Continuum of Molecular Species Differing by Their Protein to Sugar Ratio, Molecular Weight, and Charges. Biomacromolecules, 7, 2637-2649, May 2006.
[29]  Qi Wang, Burchard, W., Cui, S. W., Huang, X., Phillips, G. O., Solution Properties of Conventional Gum Arabic and a Matured Gum Arabic (Acacia (sen) SUPER GUM). Biomacromolecules, 9, 1163-1169, December 2007.
[30]  Harding, S. E., Day, K., Dham, R., Lowe, P. M., Further observations on the size, shape and hydration of kappa-carrageenan in dilute solution. Carbohydrate Polymers, 32, 81-87, November 1996.
[31]  Guner, Ali, Unperturbed dimensions and theta temperature of dextran in aqueous solutions. Journal of Applied Polymer Science, 72, 871-876, November 1999.
[32]  Guner, A., Kibarer, G., The important role of thermodynamic interaction parameter in the determination of theta temperature, dextran/water system. European Polymer Journal, 37, 619-622, July 2000.
[33]  Masuelli, Martin A., Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. International Journal of Biological Macromolecules, 48, 286-291, December 2010.
[34]  Chen, R. H., Tsaih, M. L., Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. International Journal of Biological Macromolecules, 23, 135-141, February 1998.
[35]  Kasaai, M. R., Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydrate Polymers, 68, 477-488, January 2007.
[36]  López Martínez, M. C., Díaz Baños, F. G., Ortega Retuerta, A., García de la Torre, J., Multiple Linear Least-Squares Fits with a Common Intercept: Determination of the Intrinsic Viscosity of Macromolecules in Solution. Journal of Chemical Education, 80 (9), 1036-1038, September 2003.
[37]  Matsuoka, S., Cowman, M.K., Equation of state for polymer solution. Polymer, 43, 3447-3453, Febrary 2002.
[38]  Huggins, Maurice L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. Journal of American Chemical Society, 64 (11), 2716-2718, August 1942.
[39]  Solomon, O. F., Ciuta, I. Z. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. Journal of Applied Polymer Science, 6, 683-686, July 1962.
[40]  Curvale, R. A., Cesco, J.C., Intrinsic viscosity determination by “single-point” and “double-point” equations. Applied Rheology, 19 (5), 53347, March 2009.
[41]  Harding, S. E., Berth, G., Ball, A., Mitchell, J. R., Garcia de la Torre, J., The Molecular weight Distribution and conformation of Citrus Pectins in Solution Studied by Hydrodynamics. Carbohydrate Polymers, 6, 1-15, Febraury 1991.
[42]  Flindt, C. Al-Assaf, S., Phillips G.O., Williams, P.A. Studies on acacia exudate gums. Part V. Structural features of Acacia seyal. Food Hydrocolloids, 19, 687–701, September 2004.
[43]  Harding, S. E., Varum, K., Stoke, B., Smidsrod, O., Molecular weight determination of polysaccharides. Advances in Carbohydrate Analysis, 1, 63-144, June 1991.
[44]  Smith, David R., Raymonda, J.W. Polymer molecular weight distribution. An undergraduate physical chemistry experiment. Journal of Chemical Education, 49 (8), 577-579, August 1972.
[45]  Monkos, Karol. Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin. Biophysical Chemistry, 85, 7-16, February 2000.
[46]  Bohidar, H. B., Hydrodynamic Properties of Gelatin in Dilute Solutions. International Journal of Biological Macromolecules 23, 1-6, July 1998.
[47]  Curvale, R., Masuelli, M., Perez Padilla, A., Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules, 42, 133-137, October 2007.
[48]  Ortega, A., García de la Torre, J., Equivalent Radii and Ratios of Radii from Solution Properties as Indicators of Macromolecular Conformation, Shape, and Flexibility. Biomacromolecules, 8, 2464-2475, April 2007.
[49]  Morris, G. A., Patel, T. R., Picout, D. R., Ross-Murphy, S. B., Ortega, A., Garcia de la Torre, J., Harding, S. E., Global hydrodynamic analysis of the molecular flexibility of galactomannans. Carbohydrate Polymers, 72, 356-360, August 2007.
[50]  García de la Torre, J., Carrasco, B., Universal size-independent quantities for the conformational characterization of rigid and flexible macromolecules. Progress in Colloid Polymers Science, 113, 81-86, Junary 1999.
[51]  Harding, Stephen E. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological, 68, 207-262, September 1997.
[52]  Ubbelohde, Leo, The Principle of the Suspended Level: Applications to the Measurement of Viscosity and Other Properties of Liquids. Ind. Eng. Chem. Anal. Ed., 9 (2), 85-90, December 1937.
[53]  Phillies, G. D. J., Quinlan, C. A., Glass Temperature Effects on Probe Diffusion in Dextran Solutions. Macromolecules, 25, 3110-3116, March 1992.
[54]  Monkos, Karol, Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. International Journal of Biological Macromolecules, 18, 61-68, June 1995.
[55]  Monkos, Karol, On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochimica et Biophysica Acta, 1700, 27-34, April 2004.
[56]  Durand, A., Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature effect on viscosity. European Polymer Journal, 43, 1744-1753, February 2007.
[57]  Morris, G. A., Castile, J., Smith, A., Adams, G. G., Harding, S. E., Macromolecular conformation of chitosan in dilute solution: A new global hydrodynamic approach. Carbohydrate Polymers, 76, 616-621, November 2008.
[58]  Chen, R. H., Chen, W. Y., Wang, S. T., Hsu, C. H., Tsai, M. L., Changes in the Mark–Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohydrate Polymers, 78, 902-907, November 2009.
[59]  Martin Alberto Masuelli. “Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements”. Advances in Physical Chemistry Volume 2013, Article ID 360239, 8 pages, Hindawi Publishing Corporation,
[60]  Martin A. Masuelli, Andres Takara and Adolfo Acosta. “Hydrodynamic properties of tragacanthin. Study of temperature influence”. Journal of the Argentine Chemical Society 100 (2013) 25-34.