American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2018, 6(1), 33-41
DOI: 10.12691/ajfst-6-1-6
Open AccessArticle

Nutritional and Functional Properties of Mushroom (Agaricus bisporus & Pleurotus ostreatus) and Their Blends with Maize Flour

Jackson R.M. Ishara1, 2, , Daniel N. Sila1, Glaston M. Kenji1 and Ariel K. Buzera1, 2

1Department of Food Science & Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00100, Nairobi, Kenya

2Faculty of Agriculture and environmental sciences, Université Evangélique en Afrique (UEA), P.O. Box 3323-Bukavu/Democratic Republic of Congo

Pub. Date: January 11, 2018

Cite this paper:
Jackson R.M. Ishara, Daniel N. Sila, Glaston M. Kenji and Ariel K. Buzera. Nutritional and Functional Properties of Mushroom (Agaricus bisporus & Pleurotus ostreatus) and Their Blends with Maize Flour. American Journal of Food Science and Technology. 2018; 6(1):33-41. doi: 10.12691/ajfst-6-1-6


Protein-Energy Malnutrition (PEM) and micronutrient deficiencies are currently the most important nutritional problem in most countries. The use of mushroom flours is limited due to limited knowledge about their functional and their interactions. Nutritional and functional properties of mushroom (Agaricus bisporus and Pleurotus ostreatus) flours and their blends with maize flour were investigated using standard analytical techniques and Pearson correlations. In this study, maize flour was replaced with mushroom flours at different levels; a control sample (0%), 10%, 20%, 30%, 40% and 50% of mushroom flour. Protein content of maize flour increased with increased mushroom flour content from 6.9% to 15.87 % (A. bisporus) up to 19.32% (P. ostreatus). The mineral content increased from 2.84 – 8.74mg/100g and 3.13 – 5.41 mg/100g for iron and zinc in the composite flours. A significant increase in fiber (0.53-5.89%) and Ash (1.33-6.59%) was observed. Fat, moisture, carbohydrates and energy did not increase. It was observed a positive significant linear effect (p≤0.05) in the composite flours on foaming capacity, foam stability, fat absorption capacity, water retention capacity, water absorption capacity, solubility index and swelling capacity and a negative linear effect on compact density, bulk density and syneresis was found. Gelation capacity, emulsifying activity and emulsions stability of the maize flour in blend were not affected with adding P. ostreatus, while a slight decrease was observed with adding A. bisporus. These results suggested that these nutrient rich mushroom flours under investigation could serve as useful protein supplements and food fortification.

food fortification mushroom maize flour nutritional and functional properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  FAO–FAOSTAT. (2010). Documento: Sustainable Diets and Biodiversity Directions and Solutions for Policy, Research and Action (2010). Available at: 3022e.pdf (accessed 25 January 2016).
[2]  Food and Agriculture Organization of the United Nations. (2010). The State of Food Insecurity in the World Addressing food insecurity in protracted crises 2010 Key messages. Notes. Retrieved from
[3]  Tewelde, M. G. (2015). Assessment of dietary intake and body mass index in a nutritionally deprived population in rural Democratic Republic of Congo.
[4]  Kandala, N.-B., Madungu, T. P., Emina, J. B. O., Nzita, K. P. D., & Cappuccio, F. P. (2011). Malnutrition among children under the age of five in the Democratic Republic of Congo (DRC): does geographic location matter? BMC Public Health, 11(1), 261.
[5]  Thorbecke, E. (2007). Multidimensional poverty: Conceptual and measurement issues. In The many dimensions of poverty (pp. 3-19). Palgrave Macmillan UK.
[6]  Stratton, R. J., Green, C. J., & Elia, M. (2003). Disease-related malnutrition: an evidence-based approach to treatment. Cabi.
[7]  D’Haese L, Banea-Mayambu, R. W. (2013). Food security situation in the Democratic Republic of Congo, 1-19.
[8]  PRONANUT, U. (2005). Evaluation des activités de nutrition à assise communautaire en RD Congo. Program National de Nutrition, Kinshasa.
[9]  Food and Agriculture Organization of the United Nations. (2015). Regional Overview of Food Insecurity: Near East and North Africa.
[10]  Idikut, L., Atalay, A. I., Kara, S. N., & Kamalak, A. D. E. M. (2009). Effect of hybrid on starch, protein and yields of maize grain. Journal of Animal and Veterinary Advances, 8(10), 1945-1947.
[11]  Michaelsen, K. F. (2000). Feeding and nutrition of infants and young children: guidelines for the WHO European region, with emphasis on the former Soviet countries (No. 87). WHO Regional Office Europe.
[12]  WHO (2010) World Health Statistics 2010. World Health Organization. WHO Library Cataloguing-in-Publication Data. ISBN 978 92 4 156398 7.
[13]  Wani BA, Bodha RH, Wani AH (2010). Nutritional and medicinal importance of mushrooms. J. Med. Plants Res. 4(24): 2598-2604. Wasser SP,
[14]  Bernaś, E., Jaworska, G., & Lisiewska, Z. (2006). Edible mushrooms as a source of valuable nutritive constituents. Acta Scientiarum Polonorum Technologia Alimentaria, 5(1), 5-20.
[15]  T. W. Wandati, G. M. Kenji and J. M. Onguso, Phytochemicals in edible wild mushrooms from selected areas in Kenya, Journal of Food Research, 2(3), 2013, 137.
[16]  Kayode, R. M. O., Olakulehin, T. F., Adedeji, B. S., Ahmed, O., Aliyu, T. H., & Badmos, A. H. A. (2015). Evaluation of amino acid and fatty acid profiles of commercially cultivated oyster mushroom (Pleurotus sajor-caju) grown on gmelina wood waste. Nigerian Food Journal, 33(1), 18-21.
[17]  Haq, I. U., Khan, M. A., Khan, S. A., & Ahmad, M. (2011). Biochemical analysis of fruiting bodies of Volvariella volvacea strain V v pk, grown on six different substrates, 30(2), 146-150.
[18]  Chang S.T. and Miles P.G. (1989). Recent trends in world production of cultivated edible mushroom. Mushroom J. 504: 15-17.
[19]  Farzana, T., & Mohajan, S. (2015). Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food science & nutrition, 3(5), 363-369.
[20]  Due, E. A., Michel, K. D., & Digbeu, Y. D. (2016). Physicochemical and Functional Properties of Flour from the Wild Edible Mushroom Termitomyces heimii Natarajan Harvested in Côte d’Ivoire. Turkish Journal of Agriculture-Food Science and Technology, 4(8), 651-655.
[21]  Agrahar-Murugkar D, Subbulakshmi, G (2005). Nutritional value of edible wild mushrooms collected from the Khasi hills Meghalaya. Food Chem. 89:599-603.
[22]  AOAC (2000). Association of Official Analytical Chemists. Official methods of analysis. Washington, DC. USA.
[23]  FAO. Food energy – Methods of analysis and conversion factors: Report of a technical workshop, Rome, 2002. FAO Food and Nutrition Paper No. 77. 2003.
[24]  Okezie, B. O., & Bello, A. B. (1988). Physicochemical and functional properties of winged bean flour and isolate compared with soy isolate. Journal of Food Science, 53(2), 450-454.
[25]  Lin, M. J. Y., Humbert, E. S., & Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. Journal of Food Science, 39(2), 368-370.
[26]  Yusuf, A. A., Ayedun, H., & Logunleko, G. B. (2007). Functional properties of unmodified and modified Jack bean (Canavalia ensiformis) starches.
[27]  Neto, V. Q., Narain, N., Silva, J. B., & Bora, P. S. (2001). Functional properties of raw and heat processed cashew nut (Anacardium occidentale, L.) kernel protein isolates. Molecular Nutrition & Food Research, 45(4), 258-262.
[28]  Santana, P., Huda, N., & Yang, T. A. (2012). Technology for production of surimi powder and potential of applications. Technology for production of surimi powder and potential of applications, 19(4), 1313-1323.
[29]  Banerjee S and Bhattacharya S. (2011). Compressive textural attributes, opacity and syneresis of gels prepared from gellan, agar and their mixtures. Journal of Food Engineering 102(3): 287-292.
[30]  Tosh SM and Yada S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International 43(2): 450-460.
[31]  Wang N and Toews R. (2011). Certain physicochemical and functional properties of fibre fractions from pulses. Food Research International 44(8): 2515-2523.
[32]  Kaur M and Singh N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry 91(3): 403-411.
[33]  Lopera-Cardona, S., Gallardo, C., Umaña-Gallego, J., & Gil, L. M. (2016). Comparative study of the physicochemical, compositional and functional properties of eight flours obtained from different plant materials found in Colombia. Food Science and Technology International, 22(8), 699-707.
[34]  Kumar, A., Singh, M., & Singh, G. (2013). Effect of different pretreatments on the quality of mushrooms during solar drying. Journal of food science and technology, 50(1), 165-170.
[35]  Okafor, J. N. C., Okafor, G. I., Ozumba, A. U., & Elemo, G. N. (2012). Quality characteristics of bread made from wheat and Nigerian oyster mushroom (Pleurotus plumonarius) powder. Pakistan Journal of Nutrition, 11(1), 5-10.
[36]  Farzana, T., Mohajan, S., Saha, T., Hossain, M., & Haque, M. (2017). Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Science & Nutrition.
[37]  Ekunseitan, O. F., Obadina, A. O., Sobukola, O. P., Omemu, A. M., Adegunwa, M. O., Kajihausa, O. E., ... & Keith, T. (2016). Nutritional composition, functional and pasting properties of wheat, mushroom, and high-quality cassava composite flour. Journal of Food Processing and Preservation.
[38]  Federal Studies (2002). Family Economics and Nutrition Review, 41(2): 90.
[39]  Kalagbor. I and Diri E. (2014). Evaluation of heavy metals in Orange, pineapple, avocado pear and pawpaw from a farm in Kaani, Bori. Rivers State Nigeria. International Research Journal of Public Environment Health 1(4):87-94.
[40]  Dewey, K. (2002). Guiding principles for complementary feeding of the breastfed child.
[41]  FAO/WHO (2001). Evaluation of Allergenicity of Genetically Modified Foods. Food, Agriculture, Nutrition and Development. 10(8):3029-3046.
[42]  Zlotkin, S. H., & Cherian, M. G. (1988). Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatric research, 24(3), 326-329.
[43]  Aremu, M. O., Olaofe, O., & Akintayo, T. E. (2006). A comparative study on the chemical and amino acid composition of some Nigerian under-utilized legume flours. Pak. J. Nutr, 5(1), 34-38.
[44]  Aremu, M. O., Basu, S. K., Gyar, S. D., Goyal, A., Bhowmik, P. K., & Banik, S. D. (2009). Proximate Composition and Functional Properties of Mushroom Flours from Ganoderma spp., Omphalotus olearius (DC.) Sing. and Hebeloma mesophaeum (Pers.) Quél. sed in Nasarawa State, Nigeria. Malaysian journal of nutrition, 15(2).
[45]  Hager, A. S., Wolter, A., Jacob, F., Zannini, E., & Arendt, E. K. (2012). Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. Journal of Cereal Science, 56(2), 239-247.
[46]  Deep Singh, G., Wani, A. A., Kaur, D., & Sogi, D. S. (2008). Characterisation and functional properties of proteins of some Indian chickpea (Cicer arietinum) cultivars. Journal of the Science of Food and Agriculture, 88(5), 778-786.
[47]  Akinyede, A. I., & Amoo, I. A. (2009). Chemical and functional properties of full fat and defatted Cassia fistula seed flours. Pak. J. Nutr, 8(6), 765-769.
[48]  Baquero, C., & Bermúdez, A. (1998). Los residuos vegetales de la Industria de jugo de maracuyá como fuente de fibra dietética. Lajolo, FM, Menezes, W. Fibra Dietética. Temas en Tecnología de Alimentos Ed. CYTED-IPN, Mexico, DF, 207-214.
[49]  Shad, M. A., Nawaz, H., Noor, M. I. S. B. A. H., Ahmad, H. B., Hussain, M., & Choudhry, M. A. (2013). Functional properties of maize flour and its blends with wheat flour: optimization of preparation conditions by response surface methodology. Pak. J. Bot, 45(6), 2027-2035.
[50]  Alobo, A. P. (2003). Proximate composition and functional properties of Pleurotus tuberregium sclerotia flour and protein concentrate. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 58(3), 1-9.
[51]  Padilla, F. C., Alvarez, M. T., & Alfaro, M. J. (1996). Functional properties of barinas nut flour (Caryodendron orinocense Karst., Euphorbiaceae) compared to those of soybean. Food Chemistry, 57(2), 191-196.
[52]  Lethbridge, A. B. (2009). Proximate composition and functional properties of mushroom flours from Ganoderma spp., Omphalotus olearius (DC.) Sing. and Hebeloma mesophaeum (Pers.) Quel. used in Nasarawa State, Nigeria.
[53]  Oshodi, HN Ogungbenle, MO Oladimeji, A. A. (1999). Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. International journal of food sciences and nutrition, 50(5), 325-331.
[54]  Wong WC. 2002. Chemical composition, functional properties and nutritional values of two groups of mushrooms including eleven edible Pleurotus mushrooms and fifteen other lesser-known edible ones. Thesis of the Chinese University of Hong Kong.182 p.
[55]  Kinsella, J. E. (1979). Functional properties of soy proteins. Journal of the American Oil Chemists’ Society, 56(3), 242-258.
[56]  Atta, M. B., & El-Shenawi, G. M. (2013). Functional properties orange (Citrus auran).
[57]  Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1982). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. Journal of food science, 47(2), 491-497.
[58]  Bhat, R., & Sridhar, K. R. (2008). Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds. Food Chemistry, 107(1), 174-184.
[59]  Zandonadi RP, Assunc¸ a˜ o Botelho RB, Gandolfi L, Ginani JS, Montenegro FM and Pratesi R. (2012). Green banana pasta: An alternative for gluten-free diets. Journal of the Academy Nutrition and Dietetics. 112(7): 1068-1072.