American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2017, 5(6), 249-255
DOI: 10.12691/ajfst-5-6-5
Open AccessArticle

Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species

Pamela E. Akin-Idowu1, , Olufemi T. Ademoyegun2, Yemisi O. Olagunju1, Ayodeji O. Aduloju1 and Usifo G. Adebo1

1Biotechnology Research Unit, National Horticultural Research Institute, Idi-Ishin, Ibadan, Nigeria

2Product Development Programme, National Horticultural Research Institute, Idi-Ishin, Ibadan, Nigeria

Pub. Date: November 14, 2017

Cite this paper:
Pamela E. Akin-Idowu, Olufemi T. Ademoyegun, Yemisi O. Olagunju, Ayodeji O. Aduloju and Usifo G. Adebo. Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species. American Journal of Food Science and Technology. 2017; 5(6):249-255. doi: 10.12691/ajfst-5-6-5


Investigation into the antioxidant properties of plants is a very active field of research. Amaranths are underutilized pseudo-cereals with nutraceutical potentials. The phytochemical and antioxidant activity of five grain amaranth species were evaluated using standard procedures. Highest tannin content (0.14 g/100g) and Fe chelating (66.72%) capacity was recorded in Amaranthus caudatus. Amaranthus cruentus had the highest total flavonoid (9.93 mg CE/100g) content. Amaranthus Hybridus had the highest Phytate (1.58 g/100g), total polyphenol (30.79 mg GAE/100g), DPPH scavenging activity (93.35 %), ferric reducing power (0.19 g/100g), total antioxidant 199.93 mg AAE/100g) and ABTS (201.54 mmol TE/100g) content respectively. Strong correlation was observed between the phytochemicals and antioxidant tested. From the results, grain amaranth species possess antioxidant capacity and polyphenolic content. These qualities in amaranths have promising potential means of food biofortifications.

amaranth total polyphenol amaranth extracts reducing power amaranth DPPH ABTS

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Kirakosyan, A., Seymour, E., Kaufman, O.B, Warber, S., Bolling, S. and Chang, S.C. “Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress”. Journal of Agriculture and Food Chemistry 50. 3713-3717. 2003.
[2]  Pasko, P., Barton, H., Zagrodzki, P., Gorinstein, S., Fołta, M. and Zachwieja, S. “Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry. 115. 994-998. 2009.
[3]  Gorinstein, S., Vargas, O.J.M., Jaramillo, N.O., Salas, I.A., Ayala, A.L.M. and Arancibia, A.P. “The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. European Food Research and Technology. 225. 321-328. 2007.
[4]  Majewska, M., Skrzycki, M., Podsiad, M. and Czeczot, H. “Evaluation of antioxidant potential of flavonoids: An in vitro study”. Acta Poloniae Pharmaceutica. 68. 611-615. 2011.
[5]  Klimczak, M., Malecka, M. and Pacholek, B. “Antioxidant activity of ethanolic extracts of amaranth seeds”. Nahrung/Food, 46, 184-186. 2002.
[6]  Aletor, V.A. and Adeogun, O.A. “Nutrients and antinutrient components of some tropical leafy vegetables”. Food Chemistry. 54. 375-379. 1995.
[7]  Repo-Carrasco-Valencia, R., Hellstrom, J.K., Pihlava, J. and Mattila, P.H. “Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus)”. Food Chemistry. 120. 128-133. 2010.
[8]  Escudero, N.L., Alabarracın, G.J., Lopez, L. and Gimenez, M.S. “Antioxidant activity and phenolic content of flour and protein concentrate of Amaranthus cruentus seeds”. Journal of Food Biochemistry. 35. 1327-1341. 2011.
[9]  Ray, T. and Roy, S.C. “Genetic diversity of Amaranthus Species from the Indo-Gangetic Plains revealed by RAPD analysis leading to the development of Ecotype-Specific SCAR marker”. Journal of Heredity 100(3). 338-347. 2009.
[10]  Shukla, S., Bhargava, A., Chatterjee, A., Pandey, A.C. and Mishra, B.K. “Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilized crop”. Journal of the Science of and Food Agriculture. 90. 139-144. 2010.
[11]  Guerra-Matias, A.C. and Arêas, J.A.G. “Glycemic and insulinemic responses in women consuming extruded amaranth (Amaranthus cruentus L.)”. Nutritionnal Research. 25. 815-822. 2005.
[12]  Nacoulma, O.G. “Plantes médicinales et pratiques médicales traditionnelles au Burkina Faso: cas du plateau central”. Thèse d’état, Université de Ouagadougou. p. 574. 1996.
[13]  Sudhir, S., Vibha, P., Pachauri, G., Dixit, B.S., Banerji, R. and Singh, S.P. “Nutritional contents of different foliage cuttings of vegetable amaranth”. Plant Foods for Human Nutrition. 58. 1-8. 2003.
[14]  Wheeler, E.L. and Ferrel, R.E. “A method for phytic acid determination in wheat and wheat fractions”. Cereal Chemistry. 48. 312-316. 1971.
[15]  Burns, R.E. “Method of estimation of tannin in the grain sorghum”. Agronomy Journal. 63. 511-519. 1971.
[16]  Bao, J.S., Cai Y., Sun, M., Wang, G.Y. and Corke, H. “Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability”. Journal of Agricultural and Food Chemistry. 53. 2327-2332. 2005.
[17]  Oyaizu, M. “Studies on the products of browning reaction prepared from glucose amine”. Japanese Journal of Nutrition. 44. 307-315. 1986.
[18]  Hsu, C.L., Chen, W., Weng, Y.M. and Tseng, C.Y. “Chemical composition, physical properties and antioxidant activities of yam flours as affected by different drying methods”. Food Chemistry. 83. 85-92. 2003.
[19]  Prieto, P., Pineda, M. and Anguilar, M. “Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdaenum complex: specific application to the determination of vitamin E”. Analytical Biochemistry. 269(2). 337-341. 1999.
[20]  Banerjee, A., Dasgupta, N. and Bratati, D. “In vitro study of antioxidant activity of Syzygium cumini fruit”. Food Chemistry. 90. 727-733. 2005.
[21]  Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. “Antioxidant activity applying an improved ABTS radical cation decolorisation assay”. Free Radica Biology and medicine. 26. 1231-1237. 1999.
[22]  Huang, D.J, Chen, H.J, Lin, C.D. and Lin, Y.H. “Antioxidant and antiproliferative activities of water spinach (Ipomoea aquatica Forsk) constituents”. Botanical Buletin of the Academia Sinica. 46. 99-106. 2005.
[23]  Fekadu, H., Beyene, F., and Desse, D. “Effect of traditional processing methods on nutritional composition and anti-nutritional factors of Anchote (Coccinia abyssinica) tubers grown in western Ethiopia”. Journal of Food Processing Technology. 4(7): 249-256. 2013.
[24]  Gorinstein, S., Lojek, A., Cízhacek, M., Pawelzik, E., Delgado, L.E. and Medina, O.J. “Comparison of composition and antioxidant capacity of some cereals and pseudocereals”. International Journal of Food Science and Technology. 43. 629-637. 2008.
[25]  Satinder, K., Savita, S. and Nagi, H.P.S. “Functional properties and anti-nutritional factors in cereal bran”. Journal of Food and Agro Industry. 4(2). 122-131. 2011.
[26]  Juliano, B.O. “Production and utilization of rice. In Rice Chemistry and Technology”. American Association of Cereal Chemist. 2nd ed. St. Paul, Minnesota, USA. 774. 1985.
[27]  Rao, P.U. “Evaluation of protein quality of brown and white ragi (Eleusine coracana) before and after malting”. Food Chemistry. 51. 433-436. 1994.
[28]  Anthony, U. and Chandra, T.S. “Enzymatic Treatment and Use of Starters for the Nutrient Enhancement in Fermented Flour of Red and White Varieties of Finger Millet (Eleusine coracana)”. Journal of Agricultural and Food Chemistry. 47. 2016-2019. 1999.
[29]  Rao, B.S.N. and Prabhavati, T. “Tannin content of foods consumed in India and its influence on ionisable iron”. Journal of the Science of and Food Agriculture. 33. 89-96. 1982.
[30]  Whittaker, P. and Ologunde, M.O. “Study of Iron Bioavailability in a Native Grain Amaranth Cereal for Young Children using a rat model”. Cereal Chemistry. 67(5). 505-508. 1990.
[31]  Njoki, J.W., Sila, DN. and Onyango, A.N. “Impact of Processing Techniques on Nutrient and Anti-Nutrient Content of Grain Amaranth (A. albus)”. Food Science and Quality Management. 25, ISSN 2224-6088 (Paper) ISSN 2225-0557 Online. 2014.
[32]  Onomi, S., Okazaki, Y. and Katayama T. “Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet”. Bioscience, Biotechnology and Biochemistry. 68(6). 1379-81. 2004.
[33]  Czerwinski, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M. and Katrich, E. “Oat (Avensa sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets’. The Journal of Nutritional Biochemistry. 15. 622-629. 2004.
[34]  Barba de la Rosa, A.P., Fomsgaard, I.S., Laursen, B., Mortensen, A.G., Olvera-Martinez, L. and Silva-Sanchez, C. “Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality”. Journal of Cereal Science. 49. 117-121. 2009.
[35]  Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K. and Gallagher, E. :Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking”. Food Chemistry. 119. 770-778. 2010.
[36]  Camatari, F.O.S., Lopes, K.H., Valentim, B., Xavier, J.A., da Costa, J.G., Santana, A.E.G. and Goulart, M.O.F. “Antioxidant Potential of Flours from Cereals, Tubers, Beans and Seeds Chemical Profile of Curcuma longa Flour”. Journal of Nutrition and Food Science. 6. 2. 2016.
[37]  Mattila, P., Pihlava, J.M. and Hellstrom, J. “Contents of phenolic acids, alkyland alkenylresorcinols, and avenanthramides in commercial grain products”. Journal of Agricultural and Food Chemistry. 53. 8290-8295. 2005.
[38]  López, V.R.L., Razzeto, G.S., Giménez, MS. and Escudero, N.L. “Antioxidant Properties of Amaranthus hypochondriacus Seeds and their Effect on the Liver of Alcohol-Treated Rats”. Plant Foods for Human Nutrition. 66(2). 157-162. 2011.
[39]  Kunyanga, C.N., Imungi, J.K., Okoth, M.W., Biesalski, H.K. and Vadivel, V. “Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients”. Food Science and Technology, 45(2). 269-276. 2012.
[40]  Kunyanga, C.N., Imungi, J.K., Okoth, M., Momanyi, C., Biesalski, H.K. and Vadivel, V. “Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya”. Journal of Food Science 76. 560-567. 2011.
[41]  Goufo, P. and Trindale, H. “Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol and phytic acid”. Journal of Food Science and Nutrition. 2(2). 75-104. 2014.
[42]  Oboh, G., Raddatz, H. and Henle T. “Antioxidant properties of polar and non-polar extracts of some green leafy vegetables”. Journal of the Science of and Food Agriculture 8. 2486-92. 2008.
[43]  Omololu, P.A., Rocha, J.B.T. and Kade, I.J. “Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties”. Experimental and Toxicological Pathology 63(3). 249-245. 2011.
[44]  Stratil, P., Klejdus, B. and Kubánhacek, V. “Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods”. Journal of Agricultural and Food Chemistry. 54. 607-616. 2006.
[45]  Repo-Carrasco-Valencia, R., Pena, J., Kallio, H. and Salminen, S. “Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus)”. Journal of Cereal Science. 49. 219-224. 2009.
[46]  Gallardo, C., Jimenez, L. and Garcia-Conesa, M.T. “Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions”. Food Chemistry. 99. 455-463. 2006.
[47]  Zieliński, H. and Kozłowska, H. “Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions”. Journal of Agricultural and Food Chemistry. 48(6), 2008-2016. 2000.
[48]  Yu, L., Haley, S., Perret, J., Harris, J.W. and Qian, M. “Free radical scavenging properties of wheat extracts”. Journal of Agricultural and Food Chemistry. 50. 1619-1624. 2002.
[49]  Lopez-Martine, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, CH., Parkin, K.L. and Garcia, H.S. “Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize”. Food Science and Technology. 42(6). 1187-1192. 2008.
[50]  Nsimba, R.Y., Kikuzaki, H. and Konishi Y. “Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. Seeds”. Food Chemistry. 106. 760-766. 2008.
[51]  Adom, K.K. and Liu, R.H. “Antioxidant activity of grains”. Journal of Agricultural and Food Chemistry. 50. 6182-6187. 2002.
[52]  Choi, Y., Jeong, H.S. and Lee, J. “Antioxidant activity of methanolic extracts from some grains consumed in Korea”. Food Chemistry. 103. 130-138. 2007.
[53]  Sun, T. and Ho, C. “Antioxidant activities of buckwheat extracts”. Food Chemistry. 90, 743-749. 2005.
[54]  Lillioja, S., Neal, A.L., Tapsell, L. and Jacobs, D.R., Jr. “Whole grains, type 2 diabetes, coronary heart disease, and hypertension: links to the aleurone preferred over indigestible fiber”. Biofactors 39. 242-258. 2013.
[55]  Jones, J. M. and Engleson, J. “Whole grains: benefits and challenges”. Annu Rev Food Sci. Technol. 1: 19-40. 2010.