American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2017, 5(2), 64-69
DOI: 10.12691/ajfst-5-2-6
Open AccessArticle

Antioxidant and Antimicrobial Activities of Oyster Mushroom

Okafor D. C.1, , Onuegbu N. C.1, Odimegwu N. E.1, Ibeabuchi J. C.1, Njoku N. E.1, Agunwa I. M.1, Ofoedu C. E.1 and Adirieje B. C.1

1Department of Food Science and Technology, Federal University of Technology, Owerri, P. M. B. 1526 Owerri, Imo State, Nigeria

Pub. Date: May 10, 2017

Cite this paper:
Okafor D. C., Onuegbu N. C., Odimegwu N. E., Ibeabuchi J. C., Njoku N. E., Agunwa I. M., Ofoedu C. E. and Adirieje B. C.. Antioxidant and Antimicrobial Activities of Oyster Mushroom. American Journal of Food Science and Technology. 2017; 5(2):64-69. doi: 10.12691/ajfst-5-2-6

Abstract

Four species of oyster mushroom (Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus pulmonarius and Pleurotus populinus) were evaluated for their antimicrobial and antioxidant capacity (total antioxidant activity). The total antioxidant activity differed significantly. Mean total antioxidant activities were (P.ostreatus = 35.36±0.01mm, P.sajor-caju = 32.26±0.02mm, P.pulmonarius = 28.86±0.01mm, P.populinus = 26.65±0.01mm). Antimicrobial activities of the extracts against Bacillus cereus, Streptococcus agalactiae, Agrobacterium vitis, Pseudomonas aeruginosa, Escherichia coli and Shigella dysenteriae were investigated. Antimicrobial activities of the oyster mushroom extracts against Bacillus cereus, Streptococcus agalactiae, Agrobacterium, Pseudomonas aeruginosa, Escherichia coli and Shigella dysenteriae were examined by agar well diffusion method and zones of inhibition varied for different organisms but zones of inhibition were highest in P.ostreatus and P.sajor-caju for all tested organisms except in E.coli and S.dysentriae where P.pulmonarius and P.populinus had higher zones. P.ostreatus and P.sajor-caju were not significantly different against all tested microorganisms but were found to be significantly different (p ≥ 0.05) from P.pulmonarius and P.populinus against B.cereus, E.coli and S.dysenteriae. P.pulmonarius and P.populinus were not significantly different in their inhibition against all tested microorganisms.

Keywords:
mushrooms antimicrobial potentials inhibition antioxidant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Karaman, M., Novakovic, M. and Matavulj, M. (2012). Fundamental fungal strategies in restoration of natural environment. In: Vazquez, Silva (eds). Fungi: Types, environmental impact and role in disease. New York: Nova Science Publishers Inc; In press
 
[2]  Vinceti, B., Termote, C., Ickowitz, A., Powell, B., Kehlenbeck, K., Hunter, D. (2013). The contribution of forests and trees to sustainable diets. Sustainability. 5: 4797-4824.
 
[3]  Lindequist, U., Niedermeyer, T.H.J. and Julich, W.D. (2005). The pharmacological potentials of mushrooms. Evid Based complement Alternat. Med. 2: 285-299.
 
[4]  Kues, U. and Liu, Y. (2000). Fruiting body production in basidomycetes. Appl. Microbiol Biotechnol. 54: 141-152.
 
[5]  Van, N. (2009). Developments in the European Mushroom Industry. Presented at 2nd African Conference on Edible and Medicinal mushrooms, Accra, Ghana.
 
[6]  Hossain, S., Hashimoto, M., Choudhury, E., Alam, N., Hussain, S., Hasan, M., Choudhury, S. and Mahmud, I. (2003). Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clinical and Experimental Pharmacology and Physiology. 30: 470-476.
 
[7]  Fountoulakis, M.S., Dokianakis, S.N., Kornaros, M.E., Aggelis, G.G. & Lyberatos, G. (2002), Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Research. 36: 4735-4744.
 
[8]  Tsioulpas, A., Dimou, D., Iconomou, D. and Aggelis, G. (2002). Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresource Technology. 84: 251-257.
 
[9]  Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology. 46: 2742-2747.
 
[10]  Terpinc, P. and Abramovic, H. (2010). A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chemistry. 121: 366-371.
 
[11]  Orhan, I., and Üstün, O. (2011). Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. Journal of Food Composition and Analysis, 24(3), 386-390.
 
[12]  García-Lafuente, A., Moro, C., Villares, A., Guillamón, E., Rostagno, M.A., D'Arrigo, M. and Martínez, J.A. (2011). Mushrooms as a source of anti-inflammatory agents. American Journal of Community Psychology 48(1-2): 125-141.
 
[13]  Wei, Y. and Lee, H. (2013). Oxidative Stress, Mitochondrial DNA Mutation, and Impairment of Antioxidant Enzymes in Aging, Experimental Biology and Medicine. 227: 671-682.
 
[14]  Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Review. 12(4): 564-582.
 
[15]  Nair, R. and Chanda, S.V. (2007). Antibacterial activities of some medicinal plants of Western Region of India. Turkey J. Biol. 31: 231-236.
 
[16]  Rosa, L.E., Machado, K.M.G., Jacob, C.C., Capelari, M., Rosa, C.A. and Zani, C.L. (2003). Screening of Brazilian Basidiomycetes for antimicrobial activity. Memorias do Instituto Oswaldo Cruz. 98: 967-974.
 
[17]  Stamets, P. (2000). Growing gourmet and medicinal mushroom. Berkeley Ten Speed press. pp. 45-49.
 
[18]  Yamac, M. and Bilgili, F. (2006). Antimicrobial activities of fruit bodies and/or mycelia cultures of some mushroom isolates. Pharmaceut. Biol. 44 (9): 660-667.
 
[19]  Cohen, R., Persky, L. and Hadar, Y. (2002). Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 58: 582-594.
 
[20]  Gbolagade, J.S.and Fasidi, I.O. (2005). Antimicrobial activities of some selected Nigerian mushrooms. African Journal of Biomedical Research. 8:83-87.
 
[21]  Odey, M. O., Iwara, I. A., Udiba, U. U., Johnson, J. T., Inekwe, U. V., Asenye, M. E., and Victor, O. (2012). Preparation of plant extracts from indigenous medicinal plants. Int J Sci Tech, 1, 688-92.
 
[22]  Adeniyi, B. A., Odelola, H. A., & Oso, B. A. (1996). Antimicrobial potentials of Diospyros mespiliformis (Ebenaceae). African journal of medicine and medical sciences, 25(3), 221-224.
 
[23]  Mattila, P., Suonpaaa, K. and Piironen, V. (2011) Content of vitamins, mineral elements and some phenolic compounds in cultivated mushrooms. Journal of Agriculture and Food Chemistry. 49: 2343-2348.
 
[24]  Steel, R.G.B. and Torrie, J.H. (1980). Princples and Procedures of Statistics. McGraw Hill book Co. Inc., New York, USA.
 
[25]  Onyeagba, R.A., Ugbogu, O.C, Okeke, C.U. and Iroakasi, O. (2004). Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiberofficinale Roscoe) and lime (Citrus aurantifolia Linn). African Journal of Biotechnology. 3: 552-554.
 
[26]  Sorimachi, K., Ikehara, Y. and Maezato, G. (2001). Inhibition of Agaricus blazei murill fractions of cytopathic effect induced by western in vitro. Biosciences, Biotechnology and biochemistry. 65 (7): 1645-1647.
 
[27]  Jang, W. J. and Hyung, S. W. (2004). Production of natural c9, t11 conjugated linoleic acid (c9, cLA) by submerged liquid culture of mushrooms. Gyeongsang National University, South Korea, Jinju. pp. 660-701.
 
[28]  Akyuz, M., Onganer, A.N., Erecevit, P. and Kirbag, S. (2010). Antimicrobial activity of some edible mushrooms in the eastern and southeast region of Turkey. GU J. Sci. 23(2): 125-130.
 
[29]  Jagadish, L. K., Krishnan, V. V., Shenbhagaraman, R. and Kaviyarasan, V. (2009). Comparative study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J. E. Lange) Imbach before and after boiling. African Journal of Biotechnology 8(4): 654-661.
 
[30]  Draughon, F.A. (2004). Use of botanicals as biopreservatives in foods. Food Technol. 58(2): 20-28.
 
[31]  Iwalokun, B. A., Usen, U. A., Otunba, A. A., & Olukoya, D. K. (2007). Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. African Journal of Biotechnology, 6(15), 1732.
 
[32]  Hamzah, R. U., Egwim, E. C., Kabiru, A. Y., & Muazu, M. B. (2013). Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana. Oxidants and Antioxidants in Medical Science, 2(3), 217-223.
 
[33]  Oboh, G. and Shodehinde, S.A. (2009). Distribution of nutrients, polyphenols and antioxidant activities in the pilei and stipes of some commonly consumed edible mushrooms in Nigeria. Bulletin of the Chemical Society of Ethiopia. 23: 391-398.