[1] | Burlingame, B., Mouillé, B. and Charrondière, R. 2009. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis 22: 494-502. |
|
[2] | Singh, J., Kaur, L. and Moughan, P.J. 2012. Importance of chemistry, technology and nutrition in potato processing. Food Chemistry 133: 1091. |
|
[3] | Navarre, D.A., Goyer, A. and Shakya, R. 2009. Nutritional Value of Potatoes: Vitamin, Phytonutrient, and Mineral Content, Advances in Potato Chemistry and Technology. |
|
[4] | Weichselbaum, E. 2010. An overview of the role of potatoes in the UK diet. Nutrition Bulletin 35(3): 195-206. |
|
[5] | Riley, H. 2010. Potato consumption in the UK–why is “meat and two veg”no longer the traditional British meal? Nutrition Bulletin 35: 320-331. |
|
[6] | Daly, K. and Farrington, E. 2013. Hypokalemia and Hyperkalemia in Infants and Children: Pathophysiology and Treatment, Journal of Pediatric Health Care 27 (6): 486-496. |
|
[7] | Hunsicker, L., Adler, S., Caggiula, A., England, B.K., Greene, T., Kusek, J.W., Rogers, N.L. and Teschan P.E. 1997. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney International 51(6):1908-1919. |
|
[8] | Kopple, J.D. 2001. National Kidney Foundation K/DOQI Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. American Journal of Kidney Diseases 37: S66-S70. |
|
[9] | Krijthe, B.P., Heeringa, J., Kors, J.A., Hofman, A., Franco, O.H., Witteman, J.C.M. and Stricker, B.H. 2013. Serum potassium levels and the risk of atrial fibrillation: The Rotterdam Study. International Journal of Cardiology 168: 5411-5415. |
|
[10] | Varzakas, T.H., Leach, G.C., Israilides, C.J. and Arapoglou, D. 2005. Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzyme and Microbial Technology 37: 29-41. |
|
[11] | Aguilera, J.M., 2005. Why food microstructure? Journal of Food Engineering 67: 3-11. |
|
[12] | Mayor, L. and Sereno, A.M. 2004. Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering 61: 373-386. |
|
[13] | Andersson, A., Gekas, V., Lind, I., Oliveira, F., Öste, R. and Aguilfra, J.M. 1994. Effect of preheating on potato texture. Critical Reviews in Food Science and Nutrition 34: 229-251. |
|
[14] | Arroqui, C., Rumsey, T.R., Lopez, A. and Virseda, P. 2002. Losses by diffusion of ascorbic acid during recycled water blanching of potato tissue. Journal of Food Engineering 52: 25-30. |
|
[15] | Arroqui, C., Rumsey, T.R., Lopez, A., and Virseda, P. 2001. Effect of different soluble solids in the water on the ascorbic acid losses during water blanching of potato tissue. Journal of Food Engineering 47: 123-126. |
|
[16] | Gekas, V. 1992. Transport phenomena of foods and biological materials. Boca Raton: CRC Press Inc. |
|
[17] | Lazarides, H.N., Gekas, V. and Mavroudis, N. 1997. Apparent mass diffusivities in fruit and vegetable tissues undergoing osmotic processing. Journal of Food Engineering 31: 315-324. |
|
[18] | Welti-Chanes, J., Vergara-Balderas, F., Bermudez-Aguirre, D. 2005. Transport phenomena in food engineering: Basic concepts and advances. Journal of Food Engineering 67:113-128. |
|
[19] | Atwell, W.A., Hood, L.F., Lineback, D.R., Varriano-Marston, E. and Zobel, H.F. 1988. The terminology and methodology associated with basic starch phenomena. Cereal Food Word 33: 306-311. |
|
[20] | Jenkins, P.J. and Donald, A.M. 1998. Gelatinisation of starch: A combined SAXS/WAXS/DSC and SANS study. Carbohydrate Research 308:133-147. |
|
[21] | Liu, Q., Charlet, G., Yelle, S. and Arul, J. 2002. Phase transition in potato starch-water system I. Starch gelatinization at high moisture level. Food Research International 35: 397-407. |
|
[22] | Bordoloi, A., Kaur, L. and Singh, J. 2012. Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chemistry 133: 1092-1100. |
|
[23] | Karlsson, M.E. and Eliasson, A.C. 2003. Gelatinization and retrogradation of potato (Solanum tuberosum) starch in situ as assessed by differential scanning calorimetry (DSC). LWT - Food Science and Technololgy 36: 735–741. |
|
[24] | Singh, J. and Singh, N. 2003. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids 17: 63-72. |
|
[25] | Singh, N. and Kaur, L. 2004. Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. Journal of the Science of Food and Agriculture 84: 1241-1252. |
|
[26] | BeMiller, J.N. and Whistler, R.L. 2009. Starch: Chemistry and Technology, 3rd ed. New York: Academic Press. |
|
[27] | Sila, D.N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G.K. and Hills, B.P., Waldron, K.K., Van Loey, A., 2008. Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science & Technolology 19: 309-319. |
|
[28] | Neri, L., Hernando, I.H., Pérez-Munuera, I., Sacchetti, G. and Pittia, P. 2011. Effect of Blanching in Water and Sugar Solutions on Texture and Microstructure of Sliced Carrots. Journal of Food Science 76: E23-E30. |
|
[29] | Kaur, A., Singh, N., Ezekiel, R. and Guraya, H.S. 2007. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry 101(2): 643-651. |
|
[30] | Gunaratne, A. and Hoover, R. 2002. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers 49: 425-437. |
|
[31] | Vermeylen, R., Goderis, B. and Delcour, J.A. 2006. An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers 64: 364-375. |
|
[32] | Coral, D.F., Pineda-Gómez, P., Rosales-Rivera, A. and Rodriguez-Garcia, M.E. 2009. Determination of the gelatinization temperature of starch presented in maize flours. Journal of Physics: Conference Series 167: 012057. |
|
[33] | Parada, J. and Aguilera, J.M. 2009. In vitro Digestibility and Glycemic Response of Potato Starch is Related to Granule Size and Degree of Gelatinization. Journal of Food Science 74: E34-E38. |
|