American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2016, 4(4), 115-124
DOI: 10.12691/ajfst-4-4-5
Open AccessArticle

Mathematical Modelling and Solar Tunnel Drying Characteristics of Yellow Maize

K. Agbossou1, , K. Napo1 and S. Chakraverty2

1Department of Physics University of Lomé, Laboratory of Solar Energy (LES), Togo

2Department of mathematics, National Institute of technology (NITR) Rourkela, India

Pub. Date: June 29, 2016

Cite this paper:
K. Agbossou, K. Napo and S. Chakraverty. Mathematical Modelling and Solar Tunnel Drying Characteristics of Yellow Maize. American Journal of Food Science and Technology. 2016; 4(4):115-124. doi: 10.12691/ajfst-4-4-5

Abstract

Solar drying experiments of maizes were conducted at Gape- Kpodzi, in southern Togo. In this purpose, new type tunnel solar dryer was used. Solar dryer consist of an air collector, drying chamber and an air circulation system. Heated air in solar air collector was forced through the maizes by a blower. Yellow dent type maize was used for drying experiments. During the drying period, drying air temperature, relative humidity, air flow rates, solar radiation, and lose of mass were measured continuously in different levels of the dryer. Maize with initial moisture content of 0.37 dry basis (kg water / kg dry matter) were dried until they reached a final moisture content of 0.13 (kg water / kg dry matter) at different temperatures with respect to solar radiation variation. Drying time was examined with moisture content ratio as exponential and polynomial correlations. The effective diffusivity varied from 1.938x10-10 to 1.164x10-10 m2/s over the different level of temperature range. Fourteen different mathematical models available in literature were compared using their coefficient of determination to estimate solar drying curves. According to statistical analysis results, Midilli et al. drying model has shown a better fit to the experimental drying data of maize with a coefficient of determination R2 = 0.9975 as compared to other models. The results of this study revealed that the developed solar tunnel dryer can used for dehydration of maize crops under the climatic conditions of southern Togo.

Keywords:
tunnel dryer solar drying mathematical modeling moisture ratio maize effective diffusivity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 15

References:

[1]  Norman M.J.T., Pearson, C. J.; Searle, P. G. E, (1984). The Ecology of Tropical Food Crops. Cambridge University Press, Cambridge. (19846752760) : 375.
 
[2]  Eckström N., Henriksson R., Gustavsson G.,(1984). The application of solar collectors for drying a grain and hay. Proceedings of UNESCO/Group Meeting Solar Drying, pp. 31-36.
 
[3]  Gürlek G. Özbalta N., Güngör A.(2009). Solar Tunnel Drying Characteristics and Mathematical Modelling of Tomato. J. of Thermal Science and Technology TIBTD Printed in Turkey ISSN 1300-3615.
 
[4]  Agarry S.E., Afolabi T.J., and Akintunde T.T.Y., (2014). Modelling the Water Absorption Characteristics of Different Maize (Zea Mays) Types during Soaking. J Food Process Technol, 5:5.
 
[5]  Hossain M.A. and Bala B.K., 2002,. Thin-layer drying characteristics for green chilli. Drying Technology, 20(2): 489-505.
 
[6]  Akpinar E.K., Midilli A. and Bicer Y., (2003). Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion Management, 44: 1689-1705.
 
[7]  Usab T., Lertsatitthankorn C., Poomsa-ad N., Wiset L., Siriamornpun S. and Soponronnarit S., in press. Thin layer solar drying characteristics of silkworm pupae. Food and Bioproducts Processing.
 
[8]  Basunia M.A. and Abe T., (2001). The thin -layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47, 295-301.
 
[9]  Agbossou K., Boroze T., (2013). Adaptability study of drying devices to their context and to the needs of users in Togo .Rev. Ivoir. Sci. Technol., 21&22, 1-18.
 
[10]  Amou K. A. Cartographie du rayonnement solaire global du Togo à l’aide de réseau de neurone comme outils d’estimation. Thèse de Doctorat unique, université de Lomé.
 
[11]  Zogzas, N.P., Maroulis, Z.B and Marinos- Kouris, D. 1996b. “Effective Moisture Diffusivity Estimation From Drying Data. A comparison Between various Methods Of Analysis.” Drying Technology 14 (10): 2225-2253.
 
[12]  Crank, J. (1975). The mathematics of diffusion (second ed). Oxford, UK: Clarendon Press.
 
[13]  Diamente L. M., & Munro P. A. (1993). Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51(4), 271-276.
 
[14]  Gupta Akanksha, Shukla S.K. and Srivastava A.K. Analysis of solar drying unit with phase change material storage systems Int. J. Agile Systems and Management, 2013; 6(2): 164-174.
 
[15]  Ozdemir M., Devres Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225-233.
 
[16]  Yaldiz O., Ertekin C., & Uzun, H. I. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26(5), 457- 465.
 
[17]  Aktas T. & Polat, R., (2007). Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. Journal of Food Process Engineering, 30, 607-624.
 
[18]  Kamil S., Rahmi K., Ahmet K.E., (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73:231-238.
 
[19]  Desai S.R., Vijaykumar P. and Anantachar M. (2009). Performance evaluation of farm solar dryer for chilly drying. Karnantaka J. agric. sci. 22(2):382-384.
 
[20]  Vijaykumar Palled, Desai S.R.,,Lokesh and Anatachar M., (2012) Performance evaluation of solar Tunnel dryer for chilly dryig. Karnataka j. Agric. Sci., 25(4): (472-474).
 
[21]  Vijaykumar P. Desai S.R., ANatacharM.,Yaranal R.S. and Shankar W. ,( 2010). Grapes drying in solar tunnel drying-an approach. In: Proc.of 23rd Nation. Convention of Agricultural Engineers held at MPKV, Rahuri from 6 -7.
 
[22]  Madamba P. S., Driscoll, R. H., & Buckle, K. A. (1996). The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75-97.
 
[23]  Doymaz, I.; PALA, M., (2003). The thin-layer drying characteristics of corn. Journal of Food Engineering, 60(2): 173-179.
 
[24]  Mohapatra, D.; Rao, P. S., (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66( 4): 513-518.
 
[25]  GELY, M. C; GINER, S. A. (2007). Diffusion coefficient relationships during drying of soya bean cultivars. Biosystems Engineering, 96(2): 213-222.
 
[26]  Veraverbeke, E. A.; Verboven, P.; Scheerlinck, N.; Hoang, M., L.; Nicola, B. M. Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple. Journal of Food Engineering. 58(3): 285-294, 2003.
 
[27]  Hayaloglu A. A., Karabulut I., Alpaslan M., and Kelbaliyev G., (2007). Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray-dryer. Journal of Food Engineering, 78(1): 109-117.
 
[28]  Henderson S. M. (1974). Progress in developing the thin-layer drying equation. Transactions of the ASAE, 17, 1167-1168/1172.
 
[29]  Hummedia M. A., & Sheikh A. E. (1989). Determination of drying curves of two varieties of peanuts. Agricultural Mechanization in Asia, Africa and Latin America, 20(4), 47-51/58.
 
[30]  Kassem A. S. (1998). Comparative studies on thin layer drying models for wheat. In Proceedings of the 13th international congress on agricultural engineering, Morocco.
 
[31]  Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7):1503-1513.
 
[32]  Overhults D. G., White H. E., Hamilton, H. E., & Ross, I. J. (1973).” Drying soybeans with heated air”. Transactions of the ASAE, 16, 112-113.
 
[33]  Sharaf-Eldeen O., Blaisdell Y. I., & Spagna G. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261-1271.
 
[34]  Verma L. R., Bucklin R. A., Endan J. B., & Wratten F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296-301.
 
[35]  Agrawal Y. C., & Singh R. D. (1977). Thin layer drying studies for short grain rice. ASAE Paper No: 3531, ASAE, St. Joseph, MI.
 
[36]  Ayensu A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4-6), 121-126.
 
[37]  Bengtsson G., Rahman M. S., Stanley R., & Perera, C. O. (1998). Effect of specific pre-treatment on the drying behavior of apple rings. In Proceedings of the New Zealand Institute of Food Science and Technology and The Nutrition Society of New Zealand conference, Nelson, New Zealand.
 
[38]  Bhuyan S., & Prasad S., (1990). Drying characteristics of ginger and development of a small capacity dryer. In Proceedings of the 4th international agricultural mechanization and energy congress, Adana, Turkey.
 
[39]  Wang C. Y. Singh R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
 
[40]  Yagcioglu A. (1999). Drying technique of agricultural products. Ege University Faculty of Agriculture Publications, Number: 536, Bornova, Izmir (in Turkish).
 
[41]  Gürlek Gökhan, Özbalta Necdet, Güngör Ali (2009). Ssolar Tunnel Drying Characteristics and Mathematical Modelling of tomato. J. of Thermal Science and Technology. 29, 1, 15-23, 2009.
 
[42]  Karthanos, V.T., Villalobos, G. and Saravacos, G.D. 1990. “Comparison Of Two Methods Of Estimation Of The Effective Moisture Diffusivity From Drying Data.” Journal Of Food Sciences 55 (1): 218-231.