American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2015, 3(5), 132-136
DOI: 10.12691/ajfst-3-5-3
Open AccessArticle

Diffusion Coefficient Estimation in Shrinking Solids. A Case Study: Tomato

C. Martínez-Vera1, , I. Anaya-Sosa2 and M. G. Vizcarra-Mendoza1

1Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa.Apartado Postal 55-534, México D.F., 09340, México

2Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas C.P. 11340. Del. Miguel Hidalgo. México, D.F

Pub. Date: October 12, 2015

Cite this paper:
C. Martínez-Vera, I. Anaya-Sosa and M. G. Vizcarra-Mendoza. Diffusion Coefficient Estimation in Shrinking Solids. A Case Study: Tomato. American Journal of Food Science and Technology. 2015; 3(5):132-136. doi: 10.12691/ajfst-3-5-3

Abstract

In this work are presented experimental results of the drying kinetics for a solid that shrinks between 88% and 94% in volume during the drying process depending on the drying temperature. The drying process is modeled and simulated as an isothermal diffusional process taking in account the shrinkage of the dried material. Two falling-rate drying periods were considered in the drying process. Diffusion-moisture content relationships were determined for each drying period at each of the temperature levels at which the experiments were conducted. Arrhenius type expressions were obtained for the diffusion-temperature dependency from the diffusion-moisture content profiles averaged at each drying temperature considered in this study for each drying period.

Keywords:
diffusion coefficient estimation shrinking solids tomato drying activation energy

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Demiray E., Tulek Y. Thin-layer drying of tomato slices in a convective hot air dryer. Heat and Mass Transfer, 48, 841-847. 2012.
 
[2]  Hawlader M. N. A., Uddin M. S., Ho J. C., Teng A. B. W. Drying characteristics of tomatoes, Journal of Food Engineering, 14, 259-268. 1991.
 
[3]  Giovanelli G., Zanoni B., Lavelli V., Nani R. Water Sorption, drying and antioxidant properties of dried tomato products, Journal of Food Engineering, 52, 135-141. 2002.
 
[4]  Resende O., Correa P. C., Jarén C., Moure A. J. Bean moisture diffusivity and drying kinetics: a comparison of the liquid diffusion model when taking into account and neglecting grain shrinkage. Spanish Journal of Agricultural Research, 5 (1), 51-58. 2007.
 
[5]  Crank J. The Mathematics of Diffusion, 2nd Edition, Clarendon Press, Oxford, 1975.
 
[6]  Crank J. Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984.
 
[7]  Aguerre R. J., Tolaba M., Suarez C. Modeling volume changes in food drying and hydration, Latin American Applied Research, 38, 345-349. 2008.
 
[8]  Rivera B. D. Evaluación de la deshidratación de jitomate (Licopersicum Esculentum) con atemperado en lecho vibrofluidizado, considerando la retención de licopeno como parámetro de calidad, Master´s thesis. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, 2007.
 
[9]  Lewicki P. P., Le H. V., Pomaranska-Lazuka W. Effect of pretreatment on convective drying of tomatoes. Journal of Food Engineering, 54, 141-146. 2002.
 
[10]  Kunii D., Levenspiel O. Fluidization Engineering, Second edition, Butterworth-Heinemann, USA, 1991.
 
[11]  Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes: The art of Scientific Computing, Third edition, Cambridge University Press, New York, USA, 2007.
 
[12]  Kingsly A. R. P., Singh R., Goyal R. K., Singh D. B. Thin-Layer Drying Behaviour of Organically Produced Tomato, Am. Journal of Food Technology, 2, 71-78. 2007.
 
[13]  Liu X., Chen J., Liu M., Li Z., Tao Y., Zhu D. “The Effect of Biological Material’s Tissue Shrinking on Moisture Diffusivity during Hot-air-drying”. Proceedings of the World Automation Congress, Kobe, Japan, 2010, Pages 255-260.
 
[14]  Doymaz I. Air-drying characteristics of tomatoes, Journal of Food Engineering, 78, 1291-1297. 2007.
 
[15]  Abano E., Ma. H, Wu. Q. Influence of Air Temperature on the Drying Kinetics and Quality of Tomato Slices, Journal of Food Processing and Technology, 2. 2011.
 
[16]  Chaijan, A. R., Parian A. J., Esna-Ashari M. Modeling of moisture diffusivity, activation energy and bspecific energy consumption of high moisture corn in a fixed and fluidized bed convective dryer. Spanish Journal of Agricultural Research, 9 (1), 28-40. 2011.
 
[17]  Taiwo A., C., Sikiru A. R., Ojo A. Drying characteristics and sorption isotherm of tomato slices. Journal of Food Engineering, 73, 157-163. 2006.
 
[18]  Zogzas N, P., Maroulis Z. D., Marinos-Koulis D. Moisture Diffusivity Data Compilation in Food Stuffs. Drying Technology, 14 (10), 2225-2253. 1996.
 
[19]  Purkayastha M. D., Nath Amit, Deka B. Ch., Mahanta Ch. L. Thin layer drying of tomato slices. J. Food Sci. Technol., 50 (4), 642-653. 2013.