American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2015, 3(2), 40-47
DOI: 10.12691/ajfst-3-2-3
Open AccessArticle

Physico-chemical Characterization Leaves from Five Genotypes of Cassava (Manihot esculenta Crantz) Consumed in the Far North Region (Cameroon)

Benoît B. KOUBALA1, 2, , Alphonse LAYA1, Harouna MASSAÏ2, 3, Habiba KOUNINKI1 and Elias N. NUKENINE4

1Department of Life and Earth Sciences, Higher Teacher’s Training College of Maroua, University of Maroua, Maroua, Cameroon

2Department of Chemistry, Faculty of Sciences, University of Maroua, Maroua, Cameroon

3Department of Chemistry, Faculty of Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon

4Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon

Pub. Date: April 22, 2015

Cite this paper:
Benoît B. KOUBALA, Alphonse LAYA, Harouna MASSAÏ, Habiba KOUNINKI and Elias N. NUKENINE. Physico-chemical Characterization Leaves from Five Genotypes of Cassava (Manihot esculenta Crantz) Consumed in the Far North Region (Cameroon). American Journal of Food Science and Technology. 2015; 3(2):40-47. doi: 10.12691/ajfst-3-2-3


Leaves from five cassava (Manihot esculanta) genotypes including local and improved were evaluated for their physicochemical and antioxidant properties. Results showed a significant (p<0.05) variations with the different analysed parameters. Leaves from the improved genotype 92/0326 exhibited the highest ash content (2.34 mg/g fresh weight). Mineral elements were more present in IRAD4115 and 92/0326 cassava leaves. Leaves from IRAD4115 exhibited the highest carbohydrates content meanwhile those from local genotype EN presented a high protein content (6.64%). The improved variety IRAD4115 detained the highest total phenolic compounds as well as ascorbic acid (40.51 µg /g) and the highest total antioxidant activity. Cassava leaves are a very important source of macronutrient, micronutrient minerals and antioxidant compounds that can contribute in the strive against chronic malnutrition leading to a better state of health in rural and urban population.

Cassava genotypes leaves nutritional qualities Far North Region

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Uchendu, F.N., The role of bio fortification in the reduction of micronutrient food insecurity in developing countries. African Journal of Biotechnology, 12(37), 5559-5566, May. 2013.
[2]  FAO, Perspectives de récolte et situation alimentaire, Cameroun, 2014, N° 1, p 40.
[3]  Dias, J.S. & Ortiz, R., Transgenic vegetable breeding for nutritional and health benefits, Food and Nutrition Sciences, 3, 1209-1219, Sep. 2012.
[4]  Oriola, K.O. & Raji, A.O., Trends at mechanizing cassava postharvest processing operations. International Journal Engineering & Technology, 3(9), 879-887, Sep. 2013.
[5]  El-Sharkawy, M., Stress-tolerant cassava: The role of integrative ecophysiology-breeding research in crop improvement. Open Journal of Soil Science, 2, 162-186, Jun. 2012.
[6]  Montagnac, A.J., Davis, R.C. & Tanumihardjo, AS., Nutritional value for use as a staple food and recent advances for improvement, Comprehensive Reviews in Food Science and Food Safety, 8,181-194, Jun. 2009.
[7]  Suresh, R. Saravanakumar M. & Suganyadevi, P., Anthocyanins from indian cassava (Manihot esculenta Crantz) and its antioxidant properties, International Journal of Pharmaceutical Sciences and Research, 2(7), 1819-1828, 2011.
[8]  Lancaster, P.A. & Brooks, J.E., Cassava Leaves as Human Food, Economic Botany, 37(3), 331-348, Jul. 1983.
[9]  Achidi, A.U., Ajayi, O.A., Bokanga, M. & Maziya-Dixon, B., The Use of Cassava Leaves as Food in Africa, Ecology of Food and Nutrition, 44(6), 423-435, Aug. 2005.
[10]  Balamurugan, T. & Anbuselvi, S., Physicochemical characteristics of Manihot esculenta plant and its waste. Journal of Chemical and Pharmaceutical Research, 5(2), 258-260, 2013.
[11]  Soudy, I.D., Pratiques traditionnelles, valeur alimentaire et toxicité du taro (Colocasia esculenta L.SCHOTT) produit au Tchad. Thèse pour l’obtention du grade de Docteur d’Université, Université Blaise Pascal, p153, 2012.
[12]  Aregheore, E.M., Nutritive value and inherent anti-nutritive factors in four indigenous edible leafy vegetables in human nutrition in Nigeria: a review, Journal of Food Resource Science, 1(1), 1-14, 2012.
[13]  AOAC. Official methods of analysis of AOAC International, 15th Ed. In : Herwitz W., Ed. Washington DC: Association of Official Analytical Chemistry, 132, pp. 125-126, 1990.
[14]  Kansci, G., Koubala, B.B. & Mbome, L.I., Effect of ripening on the composition and the suitability for jam processing of different varieties of mango (Mangifera indica). African Journal of Biotechnology, 2 (9), 301-306, Sep. 2003.
[15]  Jones Jr J.B. & Case V.W. Sampling Handing and Analyzing plant Tissue Samples. In: Westerman R.L., Ed., 3rd edn. Soil Teshing and Plant Analysis, Soil Science Society of America inc., Madison, WI, pp: 389-427, 1990.
[16]  Michel, M.C., Determination of amino acid and amine with ninhydrin. Practical improvement. Annales de Biologie Animale Biochimie Biophysique, 8, 557-563, 1968.
[17]  Devani, M.B., Shishoo, C.J., Shal, S.A. & Suhagia, B.N., Spectrophotometric method for microdetermination of nitrogen in Kjedahl digest. Journal of Association Official Analytical Chemists, 72 (6), 953-956, 1989.
[18]  AFNOR (Association Française pour la Normalisation), Produits alimentaires : directives générales pour le dosage de l’azote avec minéralisation selon la méthode de kjedahl. Dans: Godon & Pineau, Eds., Guide Pratique des Céréales Apria. France, 4, 263-266, 1984.
[19]  Tollier, M.T. & Robin, J.P., Adaptation of the method sulfuric orcinol automatic determination of total neutral carbohydrates. Terms of adaptation to extracts of vegetable origin. Annals of Technological Agriculture, 28, 1-15, 1979.
[20]  Koubala, B.B., Mbome, L.I., Kansci, G., Mbiapo, F.T., Crépeau, M.-J. & Thibault, J.-F., Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chemistry, 106, 1202-1207, Fev. 2008.
[21]  Barakat, M.Z. & Abdalla, A., The Ascorbic Acid Content of Edible Liver, Journal of Food Science, 30(2),185-187, 1965.
[22]  Singleton, V.L., Orthofer, R. & Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178, 1999.
[23]  Benzie, I.F..F & Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70-76, 1996.
[24]  Sun, T., Tang, J. & Powers, J.R., Effect of pectolytic enzyme preparations on the phenolic composition and antioxidant activity of asparagus juice. Journal of Agricultural and Food Chemistry, 113, 964-969, Dec. 2005.
[25]  Eleazu, C.O. & Eleazu, K.C., Determination of the proximate composition, total carotenoid, reducing sugars and residual cyanide levels of flours of 6 new yellow and white cassava (Manihot esculenta Crantz) varieties. American Journal of Food Technology, 7(10), 642-649, 2012.
[26]  Gomez, G., Valdivieso, M. & Noma, A.T., The influence of cultivar and plant age on the chemical composition of field-grown cassava leaves and roots. Quai Plant Plant Foods for Human Nutrition, 35, 109-119, 1985.
[27]  Burns, A.E., Gleadow, R.M., Zacarias, A.M., Cuambe, C.E., Miller, R.E. & Cavagnaro, T.R., Variations in the Chemical Composition of Cassava (Manihot esculenta Crantz) Leaves and Roots As Affected by Genotypic and Environmental Variation. Journal of Agricultural Food Chemistry, 60, 4946-4956, Apr. 2012.
[28]  Ravindran, G. & Ravindran, V., Changes in the Nutritional Composition of Cassava (Manihot esculenta Crantz) Leaves During Maturity, Food Chemistry, 27, 299-309, Jul. 1998.
[29]  Wobeto, C., Corrêra, A.D, Pato De Abreu, C.M., Dos Santos, C.D. & Abreu, J.R., Nutrients in the cassava (Manihot esculenta Crantz) leaf meal at three ages of the plant, Ciênc Tecnol Aliment Campinas, 26(4), 865-869, Dec. 2006.
[30]  Cheftel, J.C. & Cheftel, H., Introduction à la Biochimie et à la Technologie des aliments. Ed. Technique et Documentation, Paris 1, 147-241, 1992.
[31]  Oni, A.O., Onwuka, C.F.I., Arigbede, O.M., Anele, U.Y., Oduguwa, O.O., Onifade, O.S. & Tan, Z.L., Chemical composition and nutritive value of four varieties of cassava leaves grown in South-Western Nigeria, Journal of Animal Physiology and Animal Nutrition, 95 (5), 583-590, Nov. 2011.
[32]  Ocloo, F.C.K., Bansa, D., Boatin, R., Adom, T. & Agbemavor, W.S., Physicochemical, functional and pasting characteristics of flour produced from jackfruits (Artocarpus heterophyllus) seeds, Agricultural and Biology Journal of North America, 1(5), 903-908, Sep. 2010.
[33]  Fasuyi, A.O. Nutrient composition and processing effects on cassava leaf (Manihot esculenta, Crantz) antinutrients, Pakistan Journal of Nutrition, 4 (1), 37-42, Jan-Fev. 2005.
[34]  Achidi, A.U., Ajayi, O.A., Maziya-Dixon, B. & Bokanga, M., The effect of processing on the nutrient content of cassava (Manihot esculenta crantz) leaves, Journal of Food Processing and Preservation, 32(3), 486-502, May. 2008.
[35]  Offia-Olua, B.I., Chemical, functional and pasting properties of wheat (Triticum spp)-Walnut (Juglansregia) flour. Food and Nutrition Sciences, 5, 1591-1604, Aug. 2014.
[36]  Astrup, A., Obesity. In: Geissler, C.A. & Powers H.J., Eds. 11 Edn. Human Nutrition. Edinburgh: Churchill Livingstone, 379-399, 2005.
[37]  Kwong, W.T., Friello, P. & Semba, R.D., Interactions between iron deficiency and lead poisoning: Epidemiology and pathogenesis, Science of Total Environment, 330(1), 21-37, Sep. 2004.
[38]  FAO/WHO, Energy and protein requirements: report of a joint FAO/WHO ad hoc expert committee, Word Health Organization Technical Report Series, 522, 1-118, 1973.
[39]  Ngudi, D.D., Kuo, Y.-H. & Lambein, F., Amino acid profiles and protein quality of cooked cassava leaves or ‘saka-saka’, Journal of The Science of Food Agriculture, 83(6), 529-534, Mar. 2003.
[40]  Ajayi, O.B., Oluyege, J.O., Olaleui, O.M. & Ilesanmi, T.M. Nutritional composition, phytochemical screening and antimicrobial properties of leaf of Ficus exasperate (Vahl), Asian Journal of Biological and Life Sciences, 1(3), 242-246, 2012.
[41]  Rumeza, H., Zafar, I., Mudassar, S. & Massooma, R. Use of vegetable as nutritional food: Role in human health, Journal of Agricultural and Biochemistry Science 1, 18-20, 2006.
[42]  Lui, D., Shi, J., Ibrarra, A.C., Kakuda, Y. & Xue, S.J., The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-caratene mixtures on the DPPH free radical, LWT- Food Science and Technology, 41, 1344-1349, Dec. 2008.
[43]  Kipandula, W.L., Mwanza, B., Nguu, E. & Ogoyi, D., Antioxidant activities in extracts of selescted indigenous vegetables from Kenya and Malawi? African Journal Biotechnology, 13(17), 1824-1834, Apr. 2014.
[44]  Simão, A.A., Santos, M.A.I., Fraguas, R.M., Braga, M.A., Marques, T.R., Duarte, M.H., Dos Santos, C.M., Freire, J.M. & Correa, A. D., Antioxidants and chlorophyll in cassava leaves at three plant ages, African Journal of Agricultural Research, 8(28), 3724-3730, Jul. 2013.
[45]  Fontham, E.T., Vitamin C, Vitamin C-rich foods, and cancer: Epidemiologic Studies. In: Frei, B., Ed. Natural antioxydants in Human Health and Disease, San Diego: Academic Press, pp 157-197, 1994.
[46]  Shan, B., Cai, Y.Z., Sun, M. & Corke H., Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents, Journal of Agricultural and Food Chemistry, 53,7749-7759, Sep. 2005.
[47]  Howard, R.L., Talcott, T.S., Brenes, H.C. & Villaton, B., Changes in phytochemical and antioxidant activity in different pepper cultivars (capsoicum species) as influenced by maturity, Journal of Agricultural Food Chemistry, 48(5), 1713-1720, Apr. 2000.
[48]  Karakaya, S., El S.N. & Tas, A.A., Antioxidant activity of some foods containing phenolic compounds, International Journal of Food Science and Nutrition, 52(6), 501-508, Jan. 2001.
[49]  Karakaya, S., Bioavailability of phenolic compounds, Critical Review in Food Science and Nutrition, 44(6), 453-464, Aug. 2004.
[50]  Sreeramulu, D. & Raghunath, M., Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India, Food Research International, 43(4), 1017-1020, May. 2010.
[51]  Bala, N., Angel, G.R. & Vimala, B., Phenolic content and antioxidant activity in five underutilized starchy Curcuma species, International Journal of Pharmacognosy and Phytochemical Research, 4(2), 69-73, 2012.
[52]  Gil, M.I., Francisco, A., Toma, S-Barbera, N.F.A., Hess-Pierce, B. & Kader, A., Antioxidant capacities, phenolic compounds, carotenoids, and vitamin c contents of nectarine, peach, and plum cultivars from California, Journal of Agricultural and Food Chemistry, 50(17), 2676-2682, Jul. 2002.
[53]  Prior, R., Cao, G., Martin, A., Sofic, E., McEwen, J., O'Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G. & Mainland, C.M., Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species, Journal of Agricultural and Food Chemistry, 46(7), 2686-2693, Jun. 1998.
[54]  Kirakosyan, A., Seymour, E., Kaufman, P.B., Warber, S., Bolling, S. & Chang, S.C., Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and C. monogyna (hawthorn) subjected to drought and cold stress, Journal of Agricultural and Food Chemistry, 51(14), 3973-3976, 2003.