American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2021, 9(4), 125-133
DOI: 10.12691/ajfst-9-4-3
Open AccessArticle

Characterisation of Electrochemical Parameters for the Stabilisation of Anthocyanins from Hibiscus Sabdarrifa L

Ndiaye Khady1, , Kane Cheikhou1, Ayessou Nicolas2, Cisse Mady2 and Diop Codou Mar1

1Laboratoire d’Électrochimie et des Procédés Membranaires ESP/UCAD

2Laboratoire de Formation Continue en Industrie Agroalimentaire ESP/UCAD

Pub. Date: October 09, 2021

Cite this paper:
Ndiaye Khady, Kane Cheikhou, Ayessou Nicolas, Cisse Mady and Diop Codou Mar. Characterisation of Electrochemical Parameters for the Stabilisation of Anthocyanins from Hibiscus Sabdarrifa L. American Journal of Food Science and Technology. 2021; 9(4):125-133. doi: 10.12691/ajfst-9-4-3


The high nutritional value of Hibiscus sabdariffa L calyxes is now known almost worldwide. The multiple benefits of Hibiscus juice on human health explain the new consumer demands on the preservation techniques of the nutritional qualities of Hibiscus juice. The instability of anthocyanins, the molecules responsible for the red colouring of Hibiscus sabdariffa calyxes, remains a problem despite the numerous stabilisation techniques on the subject. Platinum electrode oxygen reduction is a new athermal technique using a two-compartment electrolysis cell separated by a cationic membrane. The fruit juice is stabilised by the passage of the reduction current for a specified time. Cyclic voltammetry was used to characterise the electroactive element, the reduction peak, which is dissolved oxygen. The electroreduced Hibiscus juice was then stored at 37°C for 30 days with an untreated control. After one month of storage, determination of the anthocyanin concentration of the electroreduced extracts and the control made it possible to retain the 30mn/-6mA couple presenting a significant difference compared to the control for the stabilisation of the juices. Bubbling with nitrogen gas not only justified the negative impact of dissolved oxygen in the Hibiscus sabdariffa juice but also confirmed that oxygen is the electroactive element in the extract. The result obtained on bubbling also reveals that it is necessary to bubble for 2 hours to obtain an anthocyanin concentration of 279.21 mg/l after storage at 37°C for 30 days, whereas 282.66 mg/l is obtained for the same extract treated electrochemically (30mn/-6mA) and stored under the same conditions; both concentrations are significantly different from the control 263.37 mg/l. The electrochemical treatment with the time/intensity couple of 30min/-6mA for 500ml of Hibiscus sabdariffa juice on platinum/ECS electrode allowed to keep more than 10% of anthocyanins at 25°C and 37°C after 30 days of storage, significant compared to the control.

Hibiscus sabdariffa Anthocyanin Stabilisation Oxygen Storage Electrochemistry

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  M. Cisse, M. Dornier, M. Sakho, A. Ndiaye, M. Reynes, and O. Sock, “Le bissap (Hibiscus sabdariffa L.): composition et principales utilisations,” Fruits, vol. 64, no. 3, pp. 179-193, 2009.
[2]  C. E. Ochoa-Velasco, C. Salazar-Gonzalez, S. Cid-Ortega, and J. A. Guerrero-Beltran, “Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum,” (in eng), J Food Sci Technol, vol. 54, no. 7, pp. 1747-1756, Jun 2017.
[3]  J. Wang, X. Cao, H. Jiang, Y. Qi, K. L. Chin, and Y. Yue, “Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS,” (in eng), Molecules, Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. vol. 19, no. 12, pp. 21226-38, Dec 17 2014.
[4]  R. S. K. PURO*, S. SAMIR, S. GHATAK, I. SHAKUNTALA, A. SEN, “Medicinal Uses of Roselle Plant (Hibiscus sabdariffa L.): A Mini Review,” (in English), Indian Journal of Hill Farming vol. Volume 27, no. Issue 1, p. 5, June 2014.
[5]  D. B.-R. Monique Gardès-Albert, Zohreh Abedinzadeh and e. D. Jore, “Espèces réactives de l’oxygène,” (in french), l’actualité chimique, p. 6, novembre-décembre 2003.
[6]  G. B. C. Chen Tan, Alireza Abbaspourrad*, “Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization,” (in English), ELSEVIER, vol. 81, no. Food Hydrocolloids, p. 9, 7 March 2018.
[7]  N. J. ELIZONDO, “Impact des opérations thermiques agroalimentaires à hautes températures sur la dégradation des anthocyanes: Caractérisation et modélisation des cinétiques réactionnelles,” pHD thesis, Formation doctorale: Génie des procédés École doctorale : Sciences des Procédés – Sciences des Aliments, MONTPELLIER SUPAGRO Institut des régions chaudes, 2011.
[8]  E. M. Abdallah, “Antibacterial efficiency of the Sudanese Roselle (Hibiscus sabdariffa L.), a famous beverage from Sudanese folk medicine,” (in eng), J Intercult Ethnopharmacol, vol. 5, no. 2, pp. 186-90, Mar-Apr 2016.
[9]  Ana Fernandesa, Marisa A.A. Rochab, Luis M.N.B.F. Santosb, Joana Brása, Joana Oliveiraa, Nuno Mateusa, Victor de Freitasa, “Blackberry anthocyanins: β-Cyclodextrin fortification for thermal and gastrointestinal stabilization,” (in English), ELSEVIER, vol. 245, no. Food Chemistry, p. 6, 2018.
[10]  E. Bakhtiari, A. Hosseini, and S. H. Mousavi, “Protective effect of Hibiscus sabdariffa against serum/glucose deprivation-induced PC12 cells injury,” (in eng), Avicenna J Phytomed, vol. 5, no. 3, pp. 231-7, May-Jun 2015.
[11]  I. Da-Costa-Rocha, B. Bonnlaender, H. Sievers, I. Pischel, and M. Heinrich, “Hibiscus sabdariffa L. - a phytochemical and pharmacological review,” (in eng), Food Chem, Review vol. 165, pp. 424-43, Dec 15 2014.
[12]  A. Malacrida, D. Maggioni, A. Cassetti, G. Nicolini, G. Cavaletti, and M. Miloso, “Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells,” (in eng), Nutr Cancer, Comparative Study Research Support, Non-U.S. Gov't vol. 68, no. 7, pp. 1161-70, Oct 2016.
[13]  E. Morales-Luna, I. F. Perez-Ramirez, L. M. Salgado, E. Castano-Tostado, C. A. Gomez-Aldapa, and R. Reynoso-Camacho, “The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content,” (in eng), J Sci Food Agric, Jun 26 2018.
[14]  I. Ifie et al., “The effect of ageing temperature on the physicochemical properties, phytochemical profile and alpha-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine,” (in eng), Food Chem, vol. 267, pp. 263-270, Nov 30 2018.
[15]  I. Ifie, B. E. Ifie, D. O. Ibitoye, L. J. Marshall, and G. Williamson, “Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and alpha-glucosidase inhibition,” (in eng), Food Chem, vol. 261, pp. 164-168, Sep 30 2018.
[16]  L. C.-Z. L. Fernando Reyes, “Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.),” ELSEVIER, p. 10, 2005.
[17]  F. V. MADY CISSE, OSCAR ACOSTA, CLAUDIE DHUIQUE-MAYER, AND MANUEL DORNIER, “Thermal Degradation Kinetics of Anthocyanins from Blood Orange, Blackberry, and Roselle Using the Arrhenius, Eyring, and Ball Models,” (in French), AGRICULTURAL AND FOOD CHEMISTRY, vol. 6285, no. 57, p. 7, June 22 2009.
[18]  P. Ngom, “Essai de stabilisation de la couleur rouge de la boisson de bissap (Hibiscus sabdariffa L.),” Thèse de doctorat du 3ème cycle, Université Cheikh Anta Diop, 2001.
[19]  k. NIANE, “ETUDE DE LA STABILITE DES CALICES ET EXTRAITS CONCENTRES DU BISSAP (HIBISCUS SABDARIFFA L.),” Ecole Supérieure Polytechnique, Université Cheikh Anta Diop de Dakar 2012.
[20]  A. Sinela, N. Rawat, C. Mertz, N. Achir, H. Fulcrand, and M. Dornier, “Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products,” (in eng), Food Chem, vol. 214, pp. 234-241, Jan 1 2017.
[21]  L. Pechamat, “Impacts de l'oxygène sur les évolutions chimiques et sensorielles du vin rouge,” 2014.
[22]  M. A. Monteiro De Araujo Silva, “Effect of closures on the evolution of the sensorial quality of wine,” 2011.
[23]  F. Weber and L. R. Larsen, “Influence of fruit juice processing on anthocyanin stability,” Food Research International, vol. 100, pp. 354-365, 2017.
[24]  M. Cissé, P. Bohuon, F. Sambe, C. Kane, M. Sakho, and M. Dornier, “Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling,” Journal of Food Engineering, vol. 109, no. 1, pp. 16-21, 2012.
[26]  “<Mémoire Master ALE KANE [11].pdf>.”
[27]  M. Cisse, “Couplage de procédés membranaires pour la production d'extraits anthocyaniques: application à# Hibiscus sabdariffa,” 2010.
[28]  M. Cisse, F. Vaillant, O. Acosta, C. Dhuique-Mayer, and M. Dornier, “Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models,” Journal of agricultural and food chemistry, vol. 57, no. 14, pp. 6285-6291, 2009.
[29]  B. Tiwari, C. O'donnell, and P. Cullen, “Effect of non thermal processing technologies on the anthocyanin content of fruit juices,” Trends in Food Science & Technology, vol. 20, no. 3-4, pp. 137-145, 2009.
[30]  P. G. FAYE, M. CISSE, N. AYESSOU, M. SAKHO, and C. M. DIOP, “Effet de la gomme arabique et des tanins du tamarin sur la stabilité des anthocyanes de sirop d’Hibiscus sabdariffa L,” Afrique SCIENCE, vol. 12, no. 5, pp. 51-58, 2016.
[31]  C. Tan, G. B. Celli, and A. Abbaspourrad, “Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization,” Food Hydrocolloids, vol. 81, pp. 371-379, 2018.
[32]  A. F. Adje, Y. Houphouët-Boigny, Y. Lozano, and H. M. Biego Godi, “Couplage de technologies membranaires pour la production d'extraits stables de bissap (# Hibiscus sabdariffa# L., Malvaceae),” 2015.
[33]  M. Cissé et al., “Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality,” Innovative Food Science & Emerging Technologies, vol. 12, no. 3, pp. 352-360, 2011.
[34]  M. Cisse, F. Vaillant, D. Soro, M. Reynes, and M. Dornier, “Crossflow microfiltration for the cold stabilization of roselle (Hibiscus sabdariffa L.) extract,” Journal of food engineering, vol. 106, no. 1, pp. 20-27, 2011.
[35]  C. Bhattacharjee, V. Saxena, and S. Dutta, “Fruit juice processing using membrane technology: A review,” Innovative Food Science & Emerging Technologies, vol. 43, pp. 136-153, 2017.
[36]  N. Idiri, “Elaboration d'éléctrodes modifiées à base des nonoparticules Nio3Co2O4 dans une matrice de polypyrole. Application en eléctrochimie,” UMMTO, 2011.
[37]  G. Gotti, “Modification de surfaces électrochimiques par des nanoparticules d'or pour la détection de molécules impliquées dans le stress oxydant,” Université de Toulouse, Université Toulouse III-Paul Sabatier, 2013.
[38]  N. Le Bozec, “Réaction de réduction de l'oxygène sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion,” Brest, 2000.
[39]  H. De Paz, “Étude spectroélectrochimique de la réaction de réduction de l'oxygène sur une électrode de carbone modifiée avec une porphyrine de cobalt (CoTPP),” 2010.
[40]  N. L. BOZEC, “Réaction de réduction de l’oxygène sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion.,” pHD thesis, Université de Bretagne Occidentale, 2000.
[41]  i. c. f. S. C. (NIMBE/LICSEN). (26/06/2014). Available:
[42]  J.-P. H. Prieels, Marc; Maschelein, Charles, “Procédé pour éliminer l'oxygène dans les aliments et les boissons, et composition enzymatique utilisée à cet effet,” Berlin, 1986.
[43]  K. Takashi Sugawara, K. J. A. N. (JP); Masashi Shiokawa, Kanagawa (JP); Yasushi Kubota, and K. J. Kanagawa (JP); Yoshinori Komatsu, “MILK MATERIAL WITH GOOD FLAVOR AND PHYSICO-CHEMICAL PROPERTIES AND PROCESS OF PRODUCING THE SAME,” United States, 2009.
[45]  Z. Iberraken and K. E. Bendjeddou, “Analyse physicochimique et microbiologique d’un jus IFRUIT,” 2016.
[46]  F. V. b. Mady Cisse a, c, Doudjo Soro d, Max Reynes c, Manuel Dornier c, “Crossflow microfiltration for the cold stabilization of roselle (Hibiscus sabdariffa L.) extract,” ELSEVIER, vol. 106, p. 8, 2011.