American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: Editor-in-chief: Hyo Choi
Open Access
Journal Browser
American Journal of Food Science and Technology. 2021, 9(4), 113-124
DOI: 10.12691/ajfst-9-4-2
Open AccessReview Article

Biological Activities of Beng-tigré (Vigna radiata): Nutritional Aspects and Therapeutic Functions

Jeanne d’Arc Wendmintiri Kabré1, Fatoumata Hama-Ba2, Aïcha Yamkaye Sawadogo1, Hama Cissé1, Yves Traoré1 and Aly Savadogo1,

1Department of Biochemistry and Microbiology, Laboratory of Applied Biochemistry and Immunology, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso

2Department of Food Technology, Research Institute of Applied sciences and technology, 05 BP 6288 Ouagadougou 05, Burkina Faso

Pub. Date: September 16, 2021

Cite this paper:
Jeanne d’Arc Wendmintiri Kabré, Fatoumata Hama-Ba, Aïcha Yamkaye Sawadogo, Hama Cissé, Yves Traoré and Aly Savadogo. Biological Activities of Beng-tigré (Vigna radiata): Nutritional Aspects and Therapeutic Functions. American Journal of Food Science and Technology. 2021; 9(4):113-124. doi: 10.12691/ajfst-9-4-2


Beng-tigré is a variety of Vigna radiata, a legume of the Fabaceae’s family newly introduced in Burkina Faso for its resilience to the effects of climate change, its high nutritional value and its potential to reduce the prevalence of chronic diseases in the population. The objective of this study was to raise awareness of the nutritional and therapeutic qualities of Beng-tigré seeds among the Burkinabe population. A legume that matures between 55 and 70 days, Beng-tigré has a high nutritional value influenced by processing methods such as germination, fermentation and cooking time. Well consumed in Asia for its high protein (23.50g), fibre (16.80g), and carbohydrate (62.75g) content, as well as its high vitamin and mineral content, Beng-tigré is used as a supplement in the preparation of weaning foods and contributes to the fight against malnutrition in infants and young children. Rich in polyphenols, polysaccharides and peptides, Beng-tigré is a functional food that can contribute to the prevention and management of certain degenerative diseases. Several in vitro studies and studies on laboratory animals have shown the anti-cancer, anti-diabetic and anti-hypertensive effect of Beng-tigré. It also acts as a prebiotic to maintain the homeostasis and functions of the intestinal microbiota. A functional food with multiple virtues, Beng-tigré can be of great use in preventive medicine in developing countries where chronic non-communicable diseases are rampant. Further studies are needed at the local level to better understand the synergistic effects of the multiple components of Beng-tigré and to ensure therapeutic convenience for the population.

Beng-tigré legumes bioactive molecules benefits health

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  J. A. Duke, B. N. Okigbo and P. Ree, “Sphenosty is stenocarpa,” Tropical grain legume. Bulletin, vol. 10, pp. 4-6, 1977.
[2]  C. Hall, C. Hillen and J. Garden Robinson, “Composition, nutritional value and health benefits of pulses,” Cereal Chemistry, vol. 94, no. 1, pp. 11-31, 2017.
[3]  N. Miceli, L. P. Buongiorno, M. G. Celi, F. Cacciola, P. Dugo, P. Donato, L. Mondello, I. Bonaccorsi and M. F. Taviano, “Role of the flavonoid-rich fraction in the antioxidant and cytotoxic activities of Bauhinia forficate Link. (Fabaceae) leaves extract,” Natural Product Research, vol. 30, no. 11, pp. 1229-1239, 2016.
[4]  I. A. Blessing and I. O. Gregory, “Effect of Processing on the Proximate Composition of the Dehulled and Undehulled Mung bean [Vigna radiata (L.) Wilczek] Flours,” Pakistan Journal of Nutrition, vol. 9, no. 10, pp. 1006-1016, 2010.
[5]  E. U. Onwurafor, J. C. Onweluzo and A. M. Ezeoke, “Effect of Fermentation Methods on Chemical and Microbial Properties of Mung Bean (Vigna radiata) Flour,” Official Journal of Nigerian Institute of Food Science and Technology, vol. 32, no. 1, pp. 89-96, 2014.
[6]  R. M. Nair, R. Schafleitner, L. Kenyon, R. Srinivasan, W. Easdown, A. W. Ebert and P. Hanson, “Genetic improvement of mungbean,” SABRAO Journal of Breeding and Genetics, vol. 44, no. 2, pp. 177-190, 2012.
[7]  S. Ali, B. Singh et S. Sharma, «Response surface analysis and extrusion process optimisation of maize–mung bean-based instant weaning food,» International Journal of Food Science and Technology, vol. 51, n° %110, pp. 2301-2312, 2016.
[8]  D. E. Kay, Food Legumes, London: Tropical products Institute, 1979, pp. 273-281.
[9]  S. H. Kim, B. H. Lee, M. Y. Baik, M. H. Joo and S. H. Yoo, “Chemical structure and physical properties of mungbean starches isolated from 5 domestic cultivars,” Journal of Food Science, vol. 72, pp. C471-C477, 2007.
[10]  Contributeurs de PlantUse Français, “Vigna radiata (PROTA),” PlantUse Français, 02 Septembre 2015. [Online]. Available: [Accessed 31 Mai 2019].
[11]  A. E. Mubarak, “Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes,” Food Chemistry, vol. 89, no. 4, pp. 489-495, 2005.
[12]  S. Ali, B. Singh and S. Sharma, “Response surface analysis and extrusion process optimisation of maize–mung bean-based instant weaning food,” International Journal of Food Science and Technology, vol. 51, no. 110, pp. 2301-2312, 2016.
[13]  R. Bazaz, W. N. Baba, F. A. Masoodi et S. Yaqoob, «Formulation and characterization of hypo allergic weaning foods containing potato and sprouted green gram,» Journal of Food Measurement and Characterization, vol. 10, pp. 453-465, 2016.
[14]  K. S. Sandhu and S-T. Lim, “Digestibility of legume starches as influenced by their physical and structural properties,” Carbohydrate Polymers, vol. 71, pp. 245-252, 2008.
[15]  M. Pal, R. L. Brahmachary and M. Ghosh, “Comparative studies on physicochemical and biochemical characteristics of scented and non-scented strains of mungbeans (Vigna radiata) of Indian origin,” Legume Research, vol. 33, pp. 1-9, 2010.
[16]  U. Chitra, V. Vimala, U. Singh and P. Geervani, “Variability in phytic acid content and protein digestibility of grain legumes,” Plant Foods for Human Nutrition, vol. 47, pp. 163-172, 1995.
[17]  E. C. Westman, W. S. Yancy, J. C. Mavropoulos, M. Marquart and J. R. McDu, “The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus,” Nutrition & Metabolism, vol. 5, no. 36, pp. 1-9, 2008.
[18]  G. H. Li, J. Z. Wan, G. W. Le and Y. H. Shi, “Novel angiotensin i-converting enzyme inhibitory peptides isolated from alcalase hydrolysate of mung bean protein,” Journal of Peptide Science: an official publication of the European Peptide Society, vol. 12, no. 8, pp. 509-514, 2006.
[19]  L. A. Hangen and M. R. Bennink, “Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats,” Nutrition and Cancer, vol. 44, no. 1, pp. 60-65, 2003.
[20]  Ministry of Agriculture and Rural Development, Field crops technical handbook. 2nd Edition, Nairobi: Ministry of Agriculture and Rural Development, 2002.
[21]  Institut de l’Environnement et de Recherches Agricoles (INERA), “Problématique de la production des semences des cultures orphelines et de niches dans un contexte de changement climatique,” in Foire aux Semences de variétés améliorées de plantes, 10ème édition, Ouagadougou, 2019.
[22]  S. Chankaew, T. Isemura, K. Naito, E. Ogiso-Tanaka, N. Tomooka, P. Somta, A. Kaga, D. A. Vaughan and G. Srinives, “Mapping for Salt Tolerance and Domestication-Related Traits in Vigna marina Subsp. oblonga, a Halophytic Species,” Theoretical and Applied Genetics, vol. 127, no. 3, pp. 691-702, 2014.
[23]  L. Pataczek, Z. A. Zahir, M. Ahmad, S. Rani, R. Nair, R. Schafleitner, G. Cadisch and T. Hilger, “Beans with Benefits-The Role of Mung-bean (Vigna radiata) in a Changing Environment,” American Journal of Plant Sciences, vol. 9, no. 07, pp. 1577-1600, 2018.
[24]  B. Amel, “Etude comparative des parametres physiologiques et biochimiques de trois espèces de Vigna (Vigna mungo L. ; Vigna unguiculata et Vigna radiata L.) stressées à la salinité,” Thèse de doctorat, Université de Orli, Algérie, 2017.
[25]  USDA (United States Department of Agriculture), “National Nutrient Database for Standard Reference,” Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville Md, 2016.
[26]  K. K. Mogotsi, “Vigna radiata (L.) R.Wilczek,” in PROTA (Plant Resources of Tropical Africa), M. Brink and G. Belay, Eds., Wageningen, 2006.
[27]  C. Solomon, Encyclopedia of Asian Food, Australia: Periplus Editions. New Holland Publishers Pty Ltd, 1998.
[28]  R. M. Nair, R. Y. Yang, W. J. Easdown, D. Thavarajah, P. Thavarajah, J. d’A. Hughes and J. D. H. Keatinge, “Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health,” Journal of the Science of Food and Agriculture, vol. 93, pp. 1805-1813, 2013.
[29]  C. J. Lambrides and I. D. Godwin, “Mung bean,” in Genome Mapping and Molecular Breeding in Plants-Pulses, Sugar and Tuber Crops, Heidelberg, Springer, 2007, pp. 69-90.
[30]  R. Y. Gan, W. Y. Lui, K. Wu, C. L. Chan, S. H. Dai, Z. Q. Sui and H. Corke, “Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review,” Trends in Food Science and Technology, vol. 59, pp. 1-14, 2017.
[31]  J. Boye, F. Zare and A. Pletch, “Pulse proteins: Processing, characterization, functional properties and applications in food and feed,” Food Research International, vol. 43, no. 2, pp. 414-431, 2010.
[32]  USDA (United States Department of Agriculture), «National Nutrient Database,» Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville Md, 2005.
[33]  S. D. Chandrasiri, R. Liyanage, J. K. Vidanarachchi, P. Weththasinghe and B. C. Jayawardana, “Does processing have a considérable effect on the nutritional and fonctional properties of Mung bean (Vigna radiata) ?,” Procedia Food Science, vol. 6, pp. 352-355, 2016.
[34]  USDA (United States Department of Agriculture), “National Nutrient Database,” Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory, Beltsville Md, 2010.
[35]  UNSSCN (United Nations System Standing Committee on Nutrition), “Fifth Report on the World Nutrition Situation: Nutrition for Improved Development Outcomes,” SCN, Geneva, 2004.
[36]  R. M. Nair, D. Thavarajah, P. Thavarajah, R. R. Giri, D. Ledesma, R.-Y. Yang, P. Hanson, W. Easdown, J. d. Hughes and J. D. H. D. Keatinge, “Mineral and phenolic concentrations of mung bean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India,” Journal of Food Composition and Analysis, vol. 39, no. 2015, pp. 23-32, 2014.
[37]  C. B. Gopalan, V. R. Sastri, C. V. Balasubramnaian, B. S. N. Rao, Y. G. Deosthale and K. C. Pant, “Nutritive Value of Indian Foods,” Indian Council of Medical Research, Hyderabad, 1989.
[38]  P. Vijayalakshmi, M. Amirthaveni and R. P. Devadas, “Possibilities of increasing bioavailability of iron from mungbean and study on the effects of its supplementation on children and women,” Project Report, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 2001.
[39]  P. W. Abrahams, “Geophagy (soil consumption) and iron supplementation in Uganda,” Tropical Medicine and International Health, n° %12, pp. 617-623, 1997.
[40]  P. S. Hooda, C. J. K. Henry, T. A. Seyoum, L. D. M. Armstrong and M. B. Fowler, “The potential impact of geophagia on the bioavailability of iron, zinc and calcium in human nutrition,” Environmental Geochemistry and Health, vol. 24, pp. 305-319, 2002.
[41]  P. Thavarajah, D. Thavarajah and A. Vandenberg, “Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability,” Journal of Agricultural and Food Chemistry, vol. 57, pp. 9044-9049, 2009.
[42]  S. Khokhar, G. Pushpanjali and R. Fenwick, “Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State,” Journal of Agricultural and Food Chemistry, vol. 42, pp. 2440-2444, 1994.
[43]  U. Konietzny and R. Greiner, “The application of PCR in the detection of mycotoxigenic fungi in foods,” The application of PCR in the detection of mycotoxigenic fungi in foods, vol. 34, no. 4, pp. 283-300, 2003.
[44]  U. Sompong, C. Kaewprasit, S. Nakasathien and P. Srinives, “Inheritance of seed phytate in mungbean (Vigna radiata (L.) Wilczek),” Euphytica, vol. 171, pp. 389-396, 2010.
[45]  M. Noakes, G. D. Brinkworth, N. D. Luscombe-Marsh, J. Tay, C. H. Thompson, G. A. Wittert, J. D. Buckley and W. S. Yancy, “Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial,” The American Journal of Clinical Nutrition, vol. 102, no. 4, pp. 780-790, 2015.
[46]  D. Tang, Y. Dong, H. Ren, L. Li and C. He, “A review of phytochemistry, metabolite changes, and medicinal uses of the common food Mung-bean and its sprouts (Vigna radiata),” Chemistry Central Journal, vol. 8, no. 1, p. 4, 2014.
[47]  H. Imtiaz, M. Burhan-Uddin and M. A. Gulzar, “Evaluation of Weaning Foods Formulated from Germinated Wheat and Mung-bean from Bangladesh,” African Journal of Food Science, vol. 5, no. 17, pp. 897-903, 2011.
[48]  J. H. Lee, J. K. Jeon, S. G. Kim, S. H. Kim, T. Chun and J. Y. Imm, “Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans,” International Journal of Food Science and Technology, vol. 46, no. 12, pp. 2513-2519, 2011.
[49]  B. Singh, J. P. Singh, A. Kaur and N. Singh, “Phenolic composition and antioxidant potential of grain legume seeds: A review,” Food Research International, vol. 101, pp. 1-16, 2017.
[50]  A. S. Sandberg, “Bioavailability of minerals in legumes,” British Journal of Nutrition, vol. 88, no. 3, pp. 281-285, 2007.
[51]  E. A. Prokudina, L. Havlícek, N. Al-Maharik, O. Lapcík, M. Strnad and J. Gruz, “Rapid uplc-esi-ms/ms method for the analysis of isoflavonoids and other phenylpropanoids,” Journal of Food Composition and Analysis, vol. 26, no. 1-2, pp. 36-42, 2012.
[52]  X. Guo, T. Li, K. Tang and R. H. Liu, “Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata),” Journal of Agricultural and Food Chemistry, vol. 60, no. 44, pp. 11050-11055, 2012.
[53]  G. Kapravelou, R. Martínez, G. Perazzoli, C. Sánchez González, J. Llopis, S. Cantarero, M. Goua, G. Bermano, J. Prados, C. Melguizo, P. Aranda, M. López-Jurado and J. M. Porres, “Germination Improves the Polyphenolic Profile and Functional Value of Mung Bean (Vigna radiata L.),” Antioxidants , vol. 9, pp.746, 2020.
[54]  N. Didry, M. Pinkas and M. Torck, “La composition chimique et l'activité antibactérienne des feuilles de diverse espèce de Grindelia,” Planta Medeca phytotherapy Journal, vol. 16, pp. 7-15, 1982.
[55]  F. Hayase and M. Kato, “Antioxydant compounds of sweet potatoes,” Journal of Nutritional Science and Vitaminology, vol. 30, no. 1, pp. 37-46, 1984.
[56]  B. Stavric and T. Matula, “Flavonoids in food: their significance for nutrition and health.,” in Lipid-soluble antioxidants: biochemistry and clinical applications, Birkhäuser Basel, 1992, pp. 274-294.
[57]  H. C. Das, J. H. Wang and E. J. Lien, “Carcinogenicity and cancer preventing activities of flavonoids: A structure-system-activity relationship (SSAR) analysis,” Progress in Drug Research. Basel Birkhauser Verlag, pp. 133-136, 1994.
[58]  D. Bidet, J. Gaignault, P. Girard and F. Trotin, “Inflammation, allergie, douleurs et acide arachidonique : du jardin des Hespérides à la cascade de l'acide arachidonique : les flavonoides,” L'actualité chimique, pp. 89 - 97, 1987.
[59]  J. Bruneton, Pharmacognosie : Phytochimie des plantes médicinales, Paris: Tec. et doc Lavoisier, 1993.
[60]  O. I. Aruoma, J. P. E. Spencer, J. Butler et B. Halliwell, “Commentary reaction of plant derived and synthetic antioxidants with trichloromethyl peroxyl radicals,” Free Radical Research, vol. 22, n° %12, pp. 187-190, 1995.
[61]  E. Middleton, C. Kandaswami and T. C. Theoharides, “The effect of plant flavonoids on mammalian cells: implication, heart disease and cancer,” Pharmacological reviews, vol. 52, no. 4, pp. 673-751, 2000.
[62]  O. T., Y. Kimura, T. Yoshida, T. Hatano, H. Okuda and S. Arichi, “Studies on the activities of tannins and related compounds from medicinal and drugs. Inhibitory effects of lipid peroxidation in mitochondria and microsome of liver,” Chemical and Pharmaceutical Bulletin, vol. 31, no. 5, pp. 1625-1631, 1983.
[63]  I. Milal, A. Scalbert and D. Expert, “Iron with-holding by plant polyphenols and resistance to pathogens and rots,” Phytochemestry, vol. 42, no. 6, pp. 1551-1555, 1996.
[64]  Y. Bai, Q. Zhang, B. Wang, M. Zhang, Y. Xu, S. Li, Y. Zhao et Z. Yu, “Plasma pharmacokinetics, bioavailability, and tissue distribution of four c-glycosyl flavones from mung bean (Vigna radiata L.) seed extracts in rat by ultrahigh-performance liquid chromatography-tandem mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 65, no. 127, pp. 5570-5580, 2017.
[65]  Z. Shi, Y. Yao, Y. Zhu and G. Ren, “Nutritional composition and antioxidant activity of twenty mung bean cultivars in China,” The Crop Journal, vol. 4, no. 5, pp. 398-406, 2016.
[66]  M. Vanhul, L. Geurts, H. Plovier, C. Druart, A. Everard, M. Stahlman, M. Rhimi, K. Chira, P. L. Teissedre, N. M. Delzenne, E. Maguin, A. Guilbot, A. Brochot, P. Gérard, F. Bachhed and P. D. Cani, “Effet d’extraits de cannelle et de marc de raisin riches en polyphénols sur le métabolisme, le microbiote intestinal et la barrière intestinale de la souris,” Nutrition Clinique et Métabolisme vol. 32, no. 4, pp. 247-248, 2018.
[67]  Y. Yao, Y. Zhu and G. Ren, “Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean,” International Journal of Biological Macromolecules, vol. 84, pp. 289-294, 2016.
[68]  L. O. Wongekalak, P. Sakulsom, K. Jirasripongpun and P. Hongsprabhas, “Potential use of antioxidative mung bean protein hydrolysate as an anticancer asiatic acid carrier,” Food Research International, vol. 44, no. 3, pp. 812-817, 2011.
[69]  J. Xie, M. Du, M. Shen, T. Wu and L. Lin, “Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from mung bean (Vigna radiate),” Food Chemistry, vol. 270, pp. 243-250, 2019.
[70]  G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” The Journal of Nutrition, vol. 125, no. 6, pp. 1401-1412, 1995.
[71]  A. Panghal, S. Janghub, K. Virkara, Y. Gata, V. Kumara and N. Chhikaraa, “Potential non-dairy probiotic products-A healthy approach,” Food Bioscience, vol. 21, pp. 80-89, 2018.
[72]  L. Gong, W. Cao, H. Chi, J. Wang, H. Zhang, J. Liu and B. Sun, “Whole cereal grains and potential health effects: Involvement of the gut microbiota,” Food Research International, vol. 103, pp. 84-102, 2018.
[73]  B. Singh, J. P. Singh, K. Shevkani, N. Singh and A. Kaur, “Bioactive constituents in pulses and their health benefits,” Journal of Food Science and Technology, vol. 54, no. 4, pp. 858-870, 2017.
[74]  S. Wongsiri, T. Ohshima and K. Duangmal, “Chemical composition: aminoacid profile and antioxidant activities of germinated mung beans (Vigna radiata),” Journal of Food Processing and Preservation, vol. 39, no. 6, pp. 1956-1964, 2015.
[75]  J. Kusumah, L. M. R. Hernandez, and E. Gonzalez de Mejia, “Antioxidant Potential of Mung Bean (Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods,” Foods, vol. 9 pp. 1241, 2020.
[76]  A. Kalim, M. Zaheer, M. U. A. Siddiqui, S. Ahmed and M. M. Hassan, “Nutritional value, Ethnomedicine, Phytochemistry and pharmacology of Vigna radiata (L.) R. Wilczek,” Journal of Pharmacognosy and Phytochemistry, vol. 10 pp. 54-58, 2021.
[77]  T. Dongyan, D. Yinmao, L. Li, L. Yueheng, H. Congfen and L. Jixiang, “Antioxidant activity in mung bean sprouts and safety of extracts for cosmetic use,” Journal of Cosmetic Science, vol. 65, no. 4, pp. 207-216, 2016.
[78]  Y. Bai, J. Chang, Y. Xu, D. Cheng, H. Liu, Y. Zhao et Z. Yu, «Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds,» Journal of Agricultural and Food Chemistry, vol. 64, n° %122, pp. 4648-4655, 2016a.
[79]  S. K. Yeap, B. K. Beh, N. M. Ali, H. Mohd Yusof, W. Y. Ho, S. P. Koh, N. B. Alitheen and K. Long, “In Vivo Antistress and Antioxidant Effects of Fermented and Germinated Mung Bean,” BioMed Research International, vol. 2014, 2014.
[80]  Y. Bai, Y. Xu, J. Chang, X. Wang, Y. Zhao et Z. Yu, «Bioactives from stems and leaves of mung beans (Vigna radiata L.),» Journal of Functional Foods, vol. 25, pp. 314-322, 2016b.
[81]  P. D. Duh, P. C. Du and G. C. Yen, “Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage,” Food and Chemical Toxicology, vol. 37, no. 11, pp. 1055-1061, 1999.
[82]  A. K. Tiwari, C. Sahana, A. Zehra, K. Madhusudana, D. A. Kumar and S. B. Agawane, “Mitigation of starch-induced postprandial glycemic spikes in rats by antioxidants-rich extract of Cicer arietinum Linn. seeds and sprouts,” Journal of Pharmacy and Bioallied Sciences, vol. 5, no. 4, pp. 270-276, 2013.
[83]  S. K. Yeap, B. K. Beh, W. Y. Ho, H. Mohd Yusof, N. E. Mohamad, N. M. Ali, I. B. Jaganath, N. B. Alitheen, S. P. Koh and K. Long, “In-vivo antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, 2015.
[84]  B. L. Luhovyy, R. C. Mollard, S. Panahi, M. F. Nunez, F. Cho and G. H. Anderson, “Canned navy bean consumption reduces metabolic risk factors associated with obesity,” Canadian Journal of Dietetic Practice and Research, vol. 76, no. 1, pp. 33-37, 2015.
[85]  J. Baudry, H. Lelong, S. Adriouch, C. Julia, B. Allès, S. Her-cberg, M. Touvier, D. Lairon, P. Galan et E. Kesse-Guyot, «Association between organic food consumption and metabolic syndrome: cross-sectional results from the Nutri Net-Santé study,» European Journal of Nutrition, vol. 57, n° %17, pp. 2477-2488, 2017.
[86]  G. H. Li, G. W. Le, H. Liu and Y. H. Shi, “Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin i-converting enzyme inhibitory activity,” Food Science and Technology International, vol. 11, no. 4, pp. 281-287, 2005.
[87]  N. M. Ali, Y. H. Mohd, S. K. Yeap, W. Y. Ho, B. K. Beh, K. Long, S. P. Koh, M. P. Abdullah et N. B. Alitheen, «Anti-inflammatory and antinociceptive activities of untreated, germinated, and fermented mung bean aqueous extract,» Evidence-Based Complementary and Alternative Medicine, 2014.
[88]  Y. R. Zhao, Z. W. Li, C. Zhao, R. Fu, X. H. Wang and Z. Y. Li, “Effects of recombinant mung bean trypsin inhibitor fragments on migration of colon cancer cell SW480,” Journal of Shanxi University (Natural Science Edition), vol. 1, p. 29, 2012.
[89]  S. K. Yeap, N. M. Ali, H. M. Yusof, B. A. Noorjahan, K. B. Boon, Y. H. Wan, P. K. Soo and L. Kamariah, “Antihyperglycemic effects of fermented and non-fermented mung bean extracts on alloxan-induced-diabetic mice,” BioMed. Research. International, vol. 2012, 2012.
[90]  K. Foster-Powell, S. H. Holt and J. C. Brand-Miller, “International table of glycemic index and glycemic load values,” The American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 56-56, 2002.
[91]  M. Lerer-Metzger, S. W. Rizkallal, J. Luo, M. Champ, M. Kabir, F. Bruzzo, F. Bornet and G. Slama, “Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats,” British Journal of Nutrition, vol. 75, no. 5, pp. 723-732, 1996.
[92]  M. Kabir, S. W. Rizkalla, M. Champ, J. Luo, J. Boillot, F. Bruzzo and G. Slama, “Dietary amylose-amylopectin starch content affects glucose and lipid metabolism in adipocytes of normal and diabetic rats,” The Journal of Nutrition, vol. 128, no. 1, pp. 35-42, 1998.
[93]  Y. Yao, X. Yang, J. Tian, C. Liu, X. Cheng and G. Ren, “Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.),” Journal of Agricultural and Food Chemistry, vol. 61, no. 34, pp. 8104-8109, 2013.
[94]  X. Peng, Z. Zheng, K. W. Cheng, F. Shan, G. X. Ren, F. Chen and M. Wang, “Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation end products,” Food Chemistry, vol. 106, no. 2, pp. 475-481, 2008.
[95]  R. Randhir and K. Shetty, “Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management,” Innovative Food Science and Emerging Technologies, vol. 8, no. 2, pp. 197-204, 2007.
[96]  R. Liyanage, C. Kiramage, R. Visvanathan, C. Jayathilake, P. Weththasinghe, R. Bangamuwage, B. Chaminda Jayawardana and J. Vidanarachchi, “Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L) Wilczek in rats,” Journal of Food Biochemistry, vol. 42, no. 1, p. e12457, 2018.
[97]  Y. H. Jang, M. J. Kang, E. O. Choe, M. Shin and J. I. Kim, “Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice,” Food Science and Biotechnology, vol. 23, no. 1, pp. 247-252, 2014.
[98]  J. Luo, W. Cai, T. Wu and B. Xu, “Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities,” Food Chemistry, vol. 201, pp. 350-360, 2016.
[99]  M. Yimam, P. Jiao, M. Hong, L. Brownell, Y. C. Lee, H. J. Kim, J. B. Nam, M. R. Kim and Q. A. Jia, “A botanical composition from Morus alba, Ilexparaguariensis, and Rosmarinus officinalis for body weight management,” Journal of Medicinal Food, vol. 20, no. 11, pp. 1100-1112, 2017.
[100]  A. S. M. Saleh, Q. Zhang and Q. Shen, “Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides,” Critical Reviews in Food Science and Nutrition, vol. 56, no. 5, pp. 760-787, 2016.
[101]  Y. B. Solanki and S. M. Jain, “Antihyperlipidemic activity of Clitoria ternatea and Vigna mungo in rats,” Pharmaceutical biology, vol. 48, no. 8, pp. 915-923, 2010.
[102]  J. Yang and D. J. Rose, “The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin,” Food & Function, vol. 7, no. 4, pp. 1805-1813, 2016.
[103]  K. Nakamura, M. Koyama, R. Ishida, T. Kitahara, T. Nakajima and T. Aoyama, “Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs,” Journal of Food Science and Technology, vol. 53, no. 1, pp. 581-590, 2016.
[104]  Y. Yao, L. Hao, Z. Shi, L. Wang, X. Cheng, S. Wang and G. Ren, “Mung bean decreases plasma cholesterol by up-regulation of cyp7a1,” Plant Foods for Human Nutrition, vol. 69, no. 2, pp. 134-136, 2014.
[105]  M. Asrullah, L. A. Lestari, S. Helmyati et A. Farmawati, «The effect of mung bean sprouts (Phaseolus radiatus L.) to lipid profile of male sprague-dawley rats fed with high-fat diet,» AIP Conference Proceedings, vol. 1755, n° %11, 2016.
[106]  Norlaily Mohd Ali, Hamidah Mohd Yusof, Kamariah Long, Swee Keong Yeap, Wan Yong Ho, Boon Kee Beh, Soo Peng Koh, Mohd Puad Abdullah and Noorjahan Banu Alitheen, “Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage,” BioMed Research International, vol. 2013, 2013.
[107]  L. H. Kushi, C. Doyle, M. Mc Cullough, C. L. Rock, W. Demark-Wahnefried, E. V. Bandera, S. Gapstur, A. V. Patel, K. Andrews and T. Gansler, “American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity,” CA: a cancer journal for clinicians, vol. 62, no. 1, pp. 30-67, 2012.
[108]  A. M. Mileo, P. Nisticò and S. Miccadei, “Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer,” Frontiers in Immunology, vol. 10, pp 729, 2019.
[109]  S. V. Uppalwar, V. Garg and R. Dutt, “Seeds of Mung Bean (Vigna radiata (L.) R.Wilczek): Taxonomy, Phytochemistry, Medicinal Uses and Pharmacology,” Current Bioactive Compounds, vol. 17, no. 3, pp. 220-233, 2021.
[110]  C. A. Patterson, H. Maskus and C. Dupasquier, “Pulse crops for health,” Cereals Foods World, vol. 54, pp. 108-113, 2009.
[111]  S. K. Yeap, H. Mohd Yusof, N. E. Mohamad, B. K. Beh, W. Y. Ho, N. M. Ali, N. B. Alitheen, S. P. Koh and K. Long, “In-vivo immunomodulation and lipid peroxidation activities contributed to chemoprevention effects of fermented mung bean against breast cancer,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, 2013.
[112]  A. Dey and A. I. Cederbaum, “Alcohol and oxidative liver injury,” Progress in Drug Research. Basel Birkhauser Verlag, pp. 133-136, 2006.
[113]  F. Stickel, K. Kessebohm, R. Weimann and H. K. Seitz, “Review of liver injury associated with dietary supplements,” Liver International, vol. 31, no. 5, pp. 595-605, 2011.
[114]  L. A. R. Lopes, M. D. C. Martins, L. M. Farias, A. K. Brito, G. D. M. Lima, V. B. Carvalho, C. F. Pereira, A. M. Conde Júnior, T. Saldanha and J. A. G. Arêas, “Cholesterol-lowering and liver-protective effects of cooked and germinated mung beans (Vigna radiata L.),” Nutrients, vol. 10, p. 821, 2018.
[115]  S. J. Wu, J. S. Wang, C. C. Lin and C. H. Chang, “Evaluation of hepatoprotective activity of legumes,” Phytomedicine, vol. 8, no. 3, pp. 213-219, 2001.
[116]  S. Zhu, W. Li, J. Li, A. Jundoria, A. E. Sama and H. Wang, “It is not just folklore: The aqueous extract of mung bean coat is protective against sepsis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, 2012.
[117]  E. Venkateshwarlu, K. P. Reddy and D. Dilip, “Potential of Vigna radiata (L.) sprouts in the management of inflammation and arthritis in rats: Possible biochemical alterations,” Indian Journal of Experimental Biology, vol. 54, p. 37, 2016.
[118]  K. Inhae, C. Seojin, H. T. Joung, C. Munji, W. Hae-Ri, L. B. Won and L. Myoungsook, “Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the kk-ay diabase mouse model,” Journal of Medicinal Food, vol. 18, no. 8, pp. 841-849, 2015.
[119]  J. K. Choi, S. W. Kim, D. S. Kim, J. Y. Lee, S. Lee, H. M. Oh, Y. S. Ha, J. Yoo, P. H. Park, T. Y. Shin, T. K. Kwon, M. C. Rho and S. H. Kim, “Oleanolic acid acetate inhibits rheumatoid arthritis by modulating T cell immune responses and matrix-degrading enzymes,” Toxicology and Applied Pharmacology, vol. 290, pp. 1-9, 2016.
[120]  Z. Dai, D. Su, Y. Zhang, Y. Sun, B. Hu, H. Ye, S. Jabbar and X. Zeng, “Immunomodulatory activity in-vitro and in-vivo of verbascose from mung beans (Phaseolus aureus),” Journal of Agricultural and Food Chemistry, vol. 62, no. 44, pp. 10727-10735, 2014.
[121]  J. Diao, Z. Chi, Z. Guo, L. Zhang, “Mung Bean Protein Hydrolysate Modulates the Immune Response Through NF-κB Pathway in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages,” Journal of food science, vol. 84, no 9, pp. 2652-2657, 2019.