American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2014, 2(1), 17-20
DOI: 10.12691/ajfst-2-1-3
Open AccessArticle

Effect of Thermal Process and Drying Principle on Color Loss of Pineapple Slices

Edoun Marcel1, , Kuitche Alexis1 and Giroux François2

1Laboratory of Energetic, Drying and Thermal Process, ENSAI, Ngaoundere, Cameroun

2CIRAD UMR QualiSud, TA 40/15 73, rue J.F. Breton, Montpellier, Cedex 5, France

Pub. Date: January 13, 2014

Cite this paper:
Edoun Marcel, Kuitche Alexis and Giroux François. Effect of Thermal Process and Drying Principle on Color Loss of Pineapple Slices. American Journal of Food Science and Technology. 2014; 2(1):17-20. doi: 10.12691/ajfst-2-1-3

Abstract

This study is a contribution to knowledge the color loss of pineapple slices during hot air drying process. The kinetics of color degradation of pineapple (Ananas cosmosus) slices were investigated at 40-60°C and at two drying principles: parallel airflow and traversing airflow. Those temperatures are in the range used to dry the commercial pineapple in tropical humid zone. Color changes associated with heat-treated slice were monitored using Hunter colorimeter (L, a, b, total color difference ΔE). The results showed that temperature had a significant effect on the color loss of pineapple slice during the process. At 60°C the color loss is less perceptible. The parallel flow drying process permits us to obtain high color quality during thermal process.

Keywords:
drying principle thermal treatment color parameters quality product

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Edoun M. “Développement d’un outil d’aide à la conception de procédés de séchage à petite échelle en zone tropicale humide,” doctorat Ph. D, ENSAI, University of Ngaoundere, 178 p, (2010).
 
[2]  Bala B.K., Mondol M.R.A., Biswas B.K., Das Chowdury B.L., Janjai S., “Solar drying of pineapple using solar tunnel drier,” Renewable Energy 28, 183-190, (2003).
 
[3]  Nicoleti J. F., Telis-Romero J., and Telis V. R. N., “Air-drying of fresh and osmotically pre-treated pineapple slices: fixed air temperature versus fixed slice temperature drying kinetics,” Drying Technology, 19 (9), 2175-2191, (2001).
 
[4]  Takamte G. Edoun M., Monkam L., Kuitche A., Kamga R. “Numerical Simulation of convective Drying of Mangoes (mangifera Indica L.) Under Variable Thermal Conditions,” International Journal of Thermal Technologies, 3 (2), 2013.
 
[5]  Damasceno Leandro F., Fernandes Fabiano A.N., Magalhães Margarida M.A., Brito Edy S., “Non-enzymatic browning in clarified cashew apple juice during thermal treatment: Kinetics and process control,” Food Chem. 106, 172-179, (2007).
 
[6]  Nuria C. Acevedo, Carolina Schebor, Pilar Buera, “Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato,” Food Chemistry 108, 900-906, (2008).
 
[7]  Krokida M.K., Maroulis R.B, Saravacos G.D., “The effect of the method of drying on the colour of dehydrated products,” International Journal of Food Science and Technology, 36, 53-59, (2001).
 
[8]  Ahmed, J., Shivhare, U. S., & Debnath, S. “Color degradation and rheology of green chilli puree during thermal processing,” International Journal of Food Science and Technology, 37, 57-64, (2002).
 
[9]  Soares A. G., Trugo L. C., Botrel N., Souza da S. L. F., “Reduction of internal browning of pineapple fruit (Ananas comusus L.) by preharvest soil application of potassium,” Postharvest Biology and Technology, 35 201-207, (2005).
 
[10]  Benjar C., Athapol N., “Color degradation kinetics of pineapple puree during thermal processing”, Swiss Society of Food Science and Technology LWT, 40, 300-306. (2007).
 
[11]  Sandra M. and Bronislaw L. W., “A kinetic model for browning in the baking of biscuits: Effects of water activity and temperature,” Leb-ensmittel-Wissenschaft und-Technologie, 40, 1078-1082, (2007).
 
[12]  Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, I. S., “A rapid method to monitor quality of apple juice during thermal processing,” Leb-ensmittel-Wissenschaft und-Technologie, 31 (7-8), 612-616. (1998).
 
[13]  Ibarz, A., Pagan, J., & Garza, S. “Kinetic models for color changes in pear puree during heating at relatively high temperatures,” Journal of Food Engineering, 39 (4), 415-422, (1999).
 
[14]  Garza, S., Ibarz, A., Pagan, J., & Giner, J., “Non-enzymatic browning in peach puree during heating,” Food Research International, 32 (5), 335-343, (1999).
 
[15]  Marisa R., Naphaporn C., Walaiporn S., “Effect of thermal processing on the quality loss of pineapple juice,” Journal of Food Engineering, 66, 259-265, (2005).
 
[16]  Rattanathanalerk M., Naphaporn C., Walaiporn S., “Effect of thermal processing on the quality loss of pineapple juice,” Journal of Food Engineering, 66, 259-265, (2005).
 
[17]  Chua K. J., Mujumdar S. A., Hawlader A. M. N., Chou K. S., Ho C. J., “Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour,” Food Research International, 34 (8), 721-731, (2001).
 
[18]  Maskan M. “Kinetics of colour change of kiwifruits during hot air and microwave drying,” Journal of Food Engineering, 48, 169-175, (2001).