American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2020, 8(5), 176-184
DOI: 10.12691/ajfst-8-5-2
Open AccessArticle

Influence of Morphological Variability on Nutritional and Technological Characteristics of Flours from Cowpea (Vigna unguiculata L., 1843) Grown in Côte d’Ivoire

Souleymane Traore1, Ahou Leticia Loukou1, Adouko Edith Agbo1, Mampeu Carine Zah1, Hadja Mawa Fatim Diabagate1, , Fatoumata Camara1 and Kouakou Brou1

1Food Sciences and Technology Department, Laboratory of Nutrition and Food Safety, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

Pub. Date: September 16, 2020

Cite this paper:
Souleymane Traore, Ahou Leticia Loukou, Adouko Edith Agbo, Mampeu Carine Zah, Hadja Mawa Fatim Diabagate, Fatoumata Camara and Kouakou Brou. Influence of Morphological Variability on Nutritional and Technological Characteristics of Flours from Cowpea (Vigna unguiculata L., 1843) Grown in Côte d’Ivoire. American Journal of Food Science and Technology. 2020; 8(5):176-184. doi: 10.12691/ajfst-8-5-2

Abstract

In Côte d'Ivoire, from leaves to seeds, cowpea were used in different forms for preparation of several dishes. For better valorization, this study aimed to evaluate the influence of morphological variability on the nutritional and technological characteristics of flours from cowpea seeds. The study was carried out on the red and white grains of cowpea collected at the market of Korhogo and Abidjan. After classification according to their size, shape and color, the grains were ground to obtain flour. The biochemical, nutritional and functional properties parameters were performed on the flours. The results showed high dry matter contents (> 85 %) in all flours whatever the color and size of grains. The red varieties flours, large and small size, were higher total carbohydrates contents (71.47% and 67.20%), and protein content (18.50 ± 0.23% and 13.33 ± 7.69%) than white varieties. In addition, the amino acid profile were dominated by methionine followed by threonine and lysine, which were showed the higher contents in flours of red varieties. The lipid contents of all the flours was less than 3%, on the other hand, the energy was higher than 340 kcal / 100g. The red and white varieties of large size were higher fiber with respective values of 25.45 ± 0.30% and 26.13 ± 0.30%. The results of functional properties showed that flour of the red varieties were higher water absorption capacity than white varieties. On the other hand, all flours were similar absorption capacity in Dinor oil whatever the color and size. The nutrient profile by the determination of scores SAIN > 5 and LIM <7.5 classified red and white cowpea in food of group 1, recommended foods for health. Whatever the morphological variabilities, the flours from red and white Cowpea could be recommended as a local product in the formulation in infant food.

Keywords:
morphological variability Grains flours nutritional profile Cowpea proteins anti-nutritional factors

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  FAO. Légumineuses des graines nutritives pour un avenir durable, 2016. [Online] http://www.fao.org/leguminous/fra/fra2016/en/. Accessed July 26, 2017.
 
[2]  N’gbesso, M. F-P., Fondio, L., Dibi, B. E. K., Djidji, H. A. and Kouame, C. N. Étude des composantes du rendement de six variétés améliorées de niébé (Vigna unguiculata L.). Journal of Applied Biosciences, 63, 4754-4762, 2013.
 
[3]  Fardet, A. Minimally-processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food and Function, 7 (5), 2338-2346, 2016.
 
[4]  FAOSTAT. Agricultural production, crop primary database. Food and Agricultural Organization of the United Nations, Rome, 2014. [Online] http://faostat.fao.org/faostat/.
 
[5]  Balla, A. and Baragé, M. Influence de la variété, du temps de stockage et du taux de natron sur la cuisson des graines de niébé. Tropicultura, 24 (1), 39-44, 2006.
 
[6]  Ndèye, F. D. Utilisation des inoculums de rhizobium pour la culture du haricot (Phaseolus vulgaris) au Sénégal. Thèse, faculté des sciences et techniques, Université Cheikh Anta Diop Dakar, Sénégal. 96p, 2006.
 
[7]  FAO. Liste des variétés de niébé, 2018. [Online] www.fao.org/search/fr/. Accessed September 14, 2018.
 
[8]  FAOSTAT. Production mondiale de haricots, 2018. [Online] http://faostat.fao.org/faostat/.
 
[9]  Farah, B. S. Caractérisation du comportement des micronutriments d’intérêt et des composés antinutritionnels des pois chiches et du niébé au cours des procédés de transformation. Master Biologie Santé, Option Industrie agroalimentaire au Sud (IAAS), Université de Montpellier, France, 39p, 2015.
 
[10]  IRAD. Contribution de la recherche à l’amélioration de la production et la consommation des légumineuses alimentaires au Cameroun, C2D/ Programme d’Appui à la Recherche Agronomique, Projet 6 : Légumineuses, 57p., 2013.
 
[11]  Roméro, A. O., Damian, H. M. A, Rivera, T. J. A, Baez, S. A., Huerta, L. M. and Cabrera, H. E. The Nutritional value of Beans (Phaseolus vulgaris L.) and its importance for Feeding of Rural communities in Puebla-Mexico. International Research Journal of Biological Sciences, 2(8), 59-65, 2013.
 
[12]  Broughton, W. J., Hernandez, G., Blair, M. W., Beebe, S., Gepts, P. and Vanderleyden, J. Beans (Phaseolus spp.) - Model Food Legumes. Plant and Soil, 252(1), 55-128, 2003.
 
[13]  Brou, K. La co-fermentation comme stratégie pour l’amélioration de la valeur nutritionnelle des aliments de complément dans les pays en développement. Thèse de doctorat 3emè cycle, Université de Cocody, Côte d’Ivoire, 126p, 2000.
 
[14]  Brou, K., Dadié, A., Dje, K. M., Gnakri, D. Évaluation de la performance nutritionnelle d’une farine infantile composée chez de jeunes rats. Agronomie Africaine, 15 (2), 67-76, 2003.
 
[15]  Darmon, B and Drewnowski, C. Energy-dense diets are associated with lower diet costs: A community study of French adults. Public Health Nutrition, 7(1), 21-27, 2004.
 
[16]  Maillot, M. Nutrient-Dense Food Groups Have High Energy Costs: An Econometric Approach to Nutrient Profiling J. Nutr., 137(3), 1815-1820, 2007.
 
[17]  Scislowski, V. Construction d’une méthodologie de calcul d’une Unité Fonctionnelle Nutritionnelle (UFN) applicable pour l’affichage environnemental des viandes et produits carnés. Rapport d’étude ADIV du projet « Recherche de méthode d’évaluation de l’expression de l’empreinte carbone des produits viande » 130 P, avec le soutien financier de FranceAgriMer, 2012.
 
[18]  Scislowski, V. Affichage environnemental: méthode pour exprimer l’impact environnemental des produits par rapport à leur fonction nutritionnelle spécifique. Rapport d’étude ADIV avec le soutien financier d’INTERBEV et de FranceAgriMer, 2014.
 
[19]  A.O.A.C. Official Methods of Analysis.Washington D.C. 15th edn, 375-379 pp., 1990.
 
[20]  BIPEA. Bureau Inter Professionnel d’Etude Analytique. Recueil des Méthodes d’Analyse des communautés européennes 110p., 1976.
 
[21]  Livesey, G. and Elia, M. Short chain fatty acids as an energy source in the colon: metabolism and clinical implications. Physiological and clinical aspects of short chain fatty acids, Cambridge University Press, Cambridge, 472-482 pp., 1995.
 
[22]  Dubois, M., Gilles, K. A., Hamilthon, J. K., Rebers, P. A. and Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356, 1956.
 
[23]  Bernfeld, P. Amylase α and β. Methods in enzymology Colwich and N.O Kaplan, 9th ed., Academic Press, Inc., New York. 154p., 1955.
 
[24]  Scalbert, A., Monties, B., Janin, G.. Tannins in wood: com-parison of different estimation methods. J. Agr. Food Chem, 37, 1324-1329, 1989.
 
[25]  Rahman, M., Punja, Z. K., Jayara, J. and Wan, A. Seaweed extract foliar fungal diseases on carrot. Crop Protection, 27(10), 1360-1366, 2005.
 
[26]  Meda, A., Lamien C., E., Romito, M., Millogo, J. and Nacoulma, O. G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chemistry, 91: 571-577, 2005.
 
[27]  Bainbridge, Z., Tomlins, K., Wellings, K. and Westby, A. Methods for assessing quality characteristics of non-grains starch staples (Part 3. Laboratory methods). Chatham, UK: Natural Resources Institute, 83, 185-193, 1996.
 
[28]  Mohammed, M. A., Mohamed, E. A., Yagoub, A. E. A., Mohamed, A. R. and Babiker, E. E.. Effect of processing methods on alkaloids, phytate, phenolics, antioxidants activity and minerals of newly developed lupin (lupinus albus l.) cultivar. Journal of Food Processing and Preservation, 41(1), 69-90, 1986.
 
[29]  Philips, R. D., Chinnan, M. S., Brach, A. L., Miller, J. and Mcwatters, K. H. Effects of pretreatment on functional and nutritional properties of cowpea meal. Journal of Food Science, 53 (3), 805-809, 1988.
 
[30]  Anderson, R. A., Conway, H. F., Pfeiffer, V. F. and Griffin, E. L. Roll and extrusion cooking of grain sorghum grits. Cereal Science Today, 14, 372-375, 1969.
 
[31]  Sosulski, F. W. The centrifuge method for determining flour absorption in hard red spring wheat. Cereal Chemistry, 39, 344-350, 1962.
 
[32]  Kassemi, N. Relation entre un insecte phytophage et sa principale plante hôte: cas de la bruche du haricot (Acanthoscelides obtectus) (Coleoptera bruchidae). Thèse magister, Université de Tlemcèn, 107p., 2006.
 
[33]  Ayala, G., Ortega, L. and Moron, C. Quinua (Chenopodium quinoa Willd.): Valor nutritivo y usos de la quinua. Cultivos Andinos, 2001.
 
[34]  Bhargava, A., Shukla, S. and Ohri, D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Wild.). Field Crops Research, 101, 104-116, 2007.
 
[35]  Rémond, D. and Walrand, S. Les graines de légumineuses: caractéristiques nutritionnelles et effets sur la santé. Innovations Agronomiques, 60, 133-144, 2007.
 
[36]  Kalidass, C. and Mohan, V. R. Nutritional composition and antinutritional factors of little-known species of Vigna. Tropical and Subtropical Agroecosystems, 15, 525-538, 2012.
 
[37]  Antova, A. G., Stoilova, D. T. and Ivanova, M. M. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. Journal of Food Composition and Analysis, 33, 146-152, 2014.
 
[38]  Imbart, S., Regnault, S and Bernard, C.. “Effects of germination and fermentation on the emulsifying properties of cowpea (Vigna unguiculata L. Walp.) proteins”. Springer Science Business Media, 13, 15-27, 2015.
 
[39]  Onwuliri, V. A. and Obu, J. A. Lipids and other constituents of Vigna unguiculata and Phaseolus vulgaris grown in northern Nigeria. Food Chemistry, 78, 1–7, 2002.
 
[40]  Bruneton, J. Pharmacognosie, phytochimie, plantes médicinales. 2e edition, Tec et Doc., Lavoisier, Paris, 915 p., 1993.
 
[41]  Mebdoua, S. Caractérisation physico-chimique de quelques populations de niébé : influence des traitements technologiques. Mémoire de Magister en phytotechnie, Ecole Nationale Supérieure Agronomique, Algérie, 83p., 2011.
 
[42]  Meynier, M. Alimentation, 2012. [Online] http://www.clubalpinorthez.fr/IMG/pdf/Alimentation.pdf. Accessed November 25, 2018.
 
[43]  Beninger, C-W. and Hosfield, G-L. Antioxidant activity of extracts, condensed tannin fractions and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. Journal of Agricultural and Food Chemistry, 51, 7879-7883, 2003.
 
[44]  Laparra, J-M., Glahn, R-P. and Miller, D-D. Bioaccessibility of phenols in common beans (Phaseolus vulgaris L.) and iron (Fe) availability to caco-2 cells. Journal of Agricultural and Food Chemistry, 56, 10999-11005, 2008.
 
[45]  Kinsella, J. E. and Melachouris, N. "Functional properties of proteins in foods: a survey." Critical Reviews in Food Science & Nutrition, 7(3), 219-280, 1996.
 
[46]  Vioque, J., Alaiz, M. et Girón-Calle, J. "Nutritional and functional properties of Vicia faba protein isolates and related fractions." Food Chemistry, 132(1), 67-72, 2012.
 
[47]  Koné, M. B., Traore, S. and Brou, K. Use of SAIN and LIM System for Determination of Nutritional Profile of Foods Consumed by Under-five Children in the District of Abidjan, Ivory Coast. Global Journal of biology, Agriculture and health sciences, 5(1), 1-6, 2016.
 
[48]  Taylor and Francis. “Study of quality of protein from soya, bean and peas“. Africa food chemistry, 13 (2), 15-21, 2004.