American Journal of Food Science and Technology
ISSN (Print): 2333-4827 ISSN (Online): 2333-4835 Website: http://www.sciepub.com/journal/ajfst Editor-in-chief: Hyo Choi
Open Access
Journal Browser
Go
American Journal of Food Science and Technology. 2020, 8(3), 81-86
DOI: 10.12691/ajfst-8-3-1
Open AccessArticle

Intermittent Drying of Mango Slices (Mangifera indica L.) “Amelie: A New Model

Tetang Fokone Abraham1, 2, , Edoun Marcel1 and Kuitche Alexis1

1Laboratory of Energetic and Applied Thermal (LETA), ENSAI - Ngaoundere, The University of Ngaoundere, P.O. Box 455, Cameroon

2Laboratory of Mathematics and Physics - Energy Group of Mechanics (LA.M.P.S-G.M.E), University of Perpignan via Domitia, France

Pub. Date: April 23, 2020

Cite this paper:
Tetang Fokone Abraham, Edoun Marcel and Kuitche Alexis. Intermittent Drying of Mango Slices (Mangifera indica L.) “Amelie: A New Model. American Journal of Food Science and Technology. 2020; 8(3):81-86. doi: 10.12691/ajfst-8-3-1

Abstract

The present work has focused on the determination of a new model of intermittent thin film drying of mango. During the experiments, the samples spread on three trays, were placed in a through-flow modular electric dryer. The masses of the fresh products studied were 500 and 800g having an initial moisture content of 80%. Drying was carried out using three inlet air temperatures 40; 50 and 60°C for four cycles of 120 minutes and for each intermittency value α = ¼,α= ½ and α = ¾. The experimental values obtained have permitted to draw the profiles of moisture ratio for each temperature. Theses profiles have conducted for a test of twelve different thin film models encountered in the literature. For each given cycle and value of the selected intermittency, the results showed that all the curves were described by the same model. Taking into account the intermittency and the number of cycles, a new thin layer drying model has been developed. The simulation of this new drying model showed a good agreement with the experimental curves obtained under the same drying conditions with R2 = 0.996, independently of the drying air temperature and the value of intermittency α.

Keywords:
intermittency intermittent drying mango modeling validation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Edoun M., Matuam B., Kuitche A. Mathematical Modelling of Thin Layer Mangoes (Mangifera indica L.) Drying Process. International Journal of Current Engineering and Technology. Vol.4, (5). 2014, 3672-3676.
 
[2]  Edoun M., Kuitche A., Marouzé C., Giroux F., Kapseu C. Pratique du séchage artisanal de fruits et légumes dans le sud du Cameroun. Fruits, vol. 65, 2010, 1-12.
 
[3]  Kuitche A., Edoun M., Takamte G. Influence of Pretreatment on Drying on the Drying Kinetic of A Local Okro (Hibiscus ersculentus) Variety. World Journal of Dairy & Food Sciences 2 (2), 2007, 83-88.
 
[4]  Condori M. and Saravia L. Analytical model for the performance of the tunnel-type green house drier. Renewable Energy, (28), 2003, 467-485.
 
[5]  Bala B.K., Mondol M.R.A., Biswas B.K., Das C.B.L., Janjai S. Solar drying of pineapple using solar tunnel drier. Renewable Energy, (28), 2003, 183-190.
 
[6]  Kapseu C. La situation du séchage et des technologies post-récolte en Afrique Sub-Saharienne; Communication présentée au Séminaire régional sur "le séchage et technologies post-récolte", Ngaoundéré, Cameroun, 9 au 11 décembre 2002.
 
[7]  Fodé M., Hamadou A., Bechis S., Piccarolo P. Premiers résultats sur de séchoirs solaires en l'expérimentation milieu tropical. Rivista di Ingegneria Agraria (2), 1997, 65-72.
 
[8]  El-Beltary A., Gamea G.R., Essa A.A.H. Solar drying characteristics of strawberry. Journal of Food Engineering. Vol. 78: 2007, 456-464.
 
[9]  Kamil S. Effect of drying methods on thin-layer drying charateristics of hullless seed pumpkin (Cucurbita pepo L.). Journal of Food engineering, Vol. 79: 2007, 23-30.
 
[10]  Nadeau J.P. and Puigalli J.R. Le séchage du processus physique aux procédés industriels. Paris, Edition Lavoisier Tec et doc., 1995, 295p.
 
[11]  Tetang F.A. Modélisation des transferts de chaleur et de matière lors du séchage intermittent des fruits à forte teneur en eau : Application à la mangue Amélie. Thèse de Doctorat, Université de Ngaoundéré. 2018, 224p.
 
[12]  Tetang F.A., Edoun M., Kuitche A., Zeghmati B. Experimental drying kinetics of mango slices (Mangifera indica L.) Amelie under intermittent conditions. International Journal of Thermal Technologies. 6(3), 2016, 203-211.
 
[13]  Putranto A., Chen X.D., Xiao Z., Webley P.A. Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA). Journal of Food Engineering, (105), 2011, 638-646.
 
[14]  Shei H.J. and Chen Y.L. Computer simulation on intermittent drying of rough rice. Drying Technology-An International Journal. Vol. 20, 2002, 615-636.
 
[15]  Cihan A. and Ece M.C. Liquid diffusion model for intermittent drying of rough rice. Journal of Food Engineering, (49), 2001, 327-331.
 
[16]  Li Y.B., Cao C.W., Yu Q.L., Zhong Q.X. Study on rough rice fissuring during intermittent drying. Drying Technology-An International Journal 17 (9), 1998, 1779-1793.
 
[17]  Mourad M., Hemati M., Laguerie C. Séchage intermittent de maïs en lit fluidisé à flottation : étude expérimentale et modélisation. Int. J. Heat Mass Transfer. Vol. 40, 1996, 1109-1119.
 
[18]  Pan Y.K., Zhao L.J., Hu W.B. The effect of tempering-intermittent drying on quality and energy of plant materials. Drying Technology-An International Journal. Vol 17, Issue 9. 1998, 1795-1812.
 
[19]  Pan Y.K., Zhao L.J., Dong Z.X., Mujumdar A.S., Kudra T. Intermittent drying of carrots: effect on product quality. Drying Technology-An International Journal, 17(10), 1999, 2323-2340.
 
[20]  Chua K.J. and Chou S.K. A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science and Technology, (40), 2005, 23-39.
 
[21]  Ben A.E., Ben M.S., Sassi M. Modeling convective and intermittent drying of agricultural products. Revue des Energies Renouvelables Vol. 13, (1). 2010, 123-132.
 
[22]  Chou S.K., Chua K.J., Mujumdar A.S., Hawlader M.N.A., Ho J.C. Institution of Chemical Engineers. Trans IChemE, Vol 78, Part C, 2000, 193-203.
 
[23]  Baini R. and Langrish T.A.G. Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, (79), 2007, 330-343.
 
[24]  Jumah R., Al-Kteimat E., Al-Hamad A., Telfah E. Constant and intermittent drying characteristics of olive cake. Drying Technology-An International Journal. Vol. 25, no7-9, 2007, 1421-1426.
 
[25]  Váquiro H.A., Clemente G., García-Pérez J.V., Mulet A., Bon J. Enthalpy-driven optimization of intermittent drying of Mangifera indica L. Chemical Engineering Research and Design. 8(7), 2009, 885-898.
 
[26]  Putranto A. and Chen X.D. Multiphase modeling of intermittent drying using the spatial reaction engineering approach (S-REA). Chemical Engineering and Processing: Process Intensification, (70), 2013, 169-183.
 
[27]  Oke D.O. and Omotayo K.F. Effect of forced-air artificial intermittent drying on cocoa beans in South-Western Nigeria. Journal of Cereals and Oil seeds. Vol. 3(1), 2012, 1-5.
 
[28]  Kowalski S.J. and Szadzinska J. Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing. 82, 2014, 65-70.
 
[29]  Cao W., Nishiyama Y., Koide S. Simulation of intermittent drying of maitake mushroom by a simplified model. Biosystems Engineering. 87 (3), 2004, 325-331.
 
[30]  Chou S.K. and Chua K.J. Heat Pump Drying Systems in Hanbook of industrial drying. Taylor & Francis Group, LLC. 2006, 1103-1131.
 
[31]  Aghfir M., Kouhila M., Jamali A., Mohamed L.A. Séchage solaire convectif pour la conservation des feuilles de romarin (Rosmarinus officinalis). 13èmes Journées Internationales de Thermique, JITH, Albi : France. 2007, 6p.
 
[32]  Schössler K., Jäger H., Knorr D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, (108), 2012, 103-110.
 
[33]  Eştürk O. and Soysal Y. Drying Properties and Quality Parameters of Dill Dried with Intermittent and Continuous Microwave-convective Air Treatments. Journal of Agricultural Sciences, 2010, 26-36.
 
[34]  Chua K.J., Mujumdar A.S., Chou S.K. Intermittent drying of bioproducts-an overview. Bioresource Technology Vol. 90. 2003, 285-295.