American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2018, 6(5), 135-142
DOI: 10.12691/ajfn-6-5-1
Open AccessArticle

In Vivo Evaluation of Omega 3 Fatty Acids Fortified Infant Flours in Relation with the Growth and the Lipid Profile of Rats

Bamba Mandoué Stéphanie1, Gbogouri Grodji Albarin1, , Oussou N’guessan Jean –Baptiste2 and Brou Kouakou1

1Food Science and Technology Department , Laboratory of Nutrition and Food Safety, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

2Natural Sciences Research and Training Department, Laboratory of Physiology, Pharmacology and Pharmacopoeia, Nangui Abrogoua University, Abidjan, Côte d’Ivoire

Pub. Date: November 23, 2018

Cite this paper:
Bamba Mandoué Stéphanie, Gbogouri Grodji Albarin, Oussou N’guessan Jean –Baptiste and Brou Kouakou. In Vivo Evaluation of Omega 3 Fatty Acids Fortified Infant Flours in Relation with the Growth and the Lipid Profile of Rats. American Journal of Food and Nutrition. 2018; 6(5):135-142. doi: 10.12691/ajfn-6-5-1


Formulated Infant flours and fortified with omega-3 fatty acids were evaluated in vivo. Three groups of five growing Wistar rats aged from 21 ± 3 days with an average weight of 43.41± 0,32 grams were fed with Omega 3 fatty acids fortified Infant flours (FMMS: Infant flour fortified with a whole soy flour and FMMHHP: infant flour fortified with a mackerel oil). Nutritional parameters (weight gain, total dry matter intake and feed efficiency ratio), the lipid profile of their serum and weight of organs (liver, spleen, brain, adipose tissue) were performed at the end of experiment. Weight gain (WG: 2.36 g / day), total dry matter intake (DMI: 10.75 g / day) and feed efficiency ratio (FE: 0.22) for FMMS and (WG: 1.63 g / day; DMI: 9. 22 g / day, FE: 0.18) for FMMHHP were higher than those of rats fed to non-fortified flour FMMHA (WG: 0.72 g / day, DMI: 7.17 g / day, FE: 0.10). The values of total cholesterol (0.64 and 0.66 mg / dl), triglycerides (0.88 and 0.98 mg / dl) and LDL cholesterol (0.05 and 0.11 mg / dl) of rats fed with fortified flours FMMS and FMMHHP were lower than those of rats fed with non-fortified infant flours (FMMHA) (total cholesterol 0.85 mg / dl, triglycerides 1.09 mg / dl, LDL cholesterol 0.24 mg / dl). The HDL cholesterol values (0.40 to 0.45 mg / dl) obtained in the rats that consumed the fortified flours was higher than value obtained in the rats that had consumed the non-fortified flour (0.32 mg / dl). The consumption of omega 3 fortified flours also resulted in a significant decrease in serum levels of total and LDL cholesterol and an increase in serum HDL cholesterol levels in the rat. The consumption of these fortified infant flours does not lead to hyperlipidemia in growing rats.

infant flours fortification omega 3 lipidemia mackerel oil

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  United Nations International Children’s Emergency Fund, La situation des enfants dans le monde. La malnutrition: causes, conséquences et solutions. New York, Etats Unis, Rapport, 2008, 164.
[2]  Food and Agriculture Organization, Deuxième conférence internationale sur la nutrition. FAO, Rome, Italie, 2014, 7.
[3]  United Nations International Children’s Emergency Fund, breastfeeding: foundation for a healthy future. UNICEF, 1999. Available: files/pub brochure_en, [Accessed in august 2017].
[4]  Kikafunda, J. K., Walker, A.F. and Tumwine, J.K., “weaning foods and practices in central Uganda: a cross-sectional study”. African Journal of Food Agriculture, Nutrition and Development, 3 (2). 2003.
[5]  Michaelsen, K.F., Dewey, K.G., Perez-Exposito, A.B., Nurhasan, M., Lauritzen, L and Roos, N., “food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6–24 months), and pregnant and lactating women. Maternal and Child Nutrition”. 7 (Suppl. 2): 124-140. 2011.
[6]  Guesnet, P., Ailhaud, G., Delplanque, B. and Alessandri, J-M., “place des lipides dans l’alimentation du nourrisson”. Cahiers de nutrition et de diététique, 48(4): 175-183. 2013.
[7]  Belleville, J., “Complémentarité et équilibre de l’apport alimentaire en protéines et en lipides”. Oléagineux, Corps Gras, Lipides, 10 (1): 31-40. 2003.
[8]  Qawasmi, A., Landeros-Weisenberger, A. and Bloch M. H., “Meta-analysis of LCPUFA Supplementation of Infant Formula and Visual Acuity”. Pediatrics, 131(1): E262-E272. 2013.
[9]  Hurtado, J. A., Iznaola, C., Peña, M., Ruíz, J., Peña-Qintara, L., Kajarabille , N., Rodriguez-Santana, Y., Sanjurjo, P., Aldámiz-Echevarría, L., Ochoa, J. and Lara-Villoslada F., “Effects of Maternal Ω-3 Supplementation on Fatty Acids and on Visual and Cognitive Development”. Journal of pediatric gastroenterology and nutrition, 61(4): 472-480. 2015.
[10]  Lau, B.Y.Y., Cohen, D.J.A., Ward, W.E. and Ma D.W.L., “Investigating the role of polyunsaturated fatty acids in bone development using animal models”. Molecules, 18 (11): 14203-14227. 2013.
[11]  Atkinson, T.G., Barker, H.J. and Meckling G.K.A., “Incorporation of long chain n-3 fatty acids in tissues and enhanced bone marrow cellularity with docosahexaenoic acid feeding in post weanling Fisher 344 rats”, Lipids 32 (3): 293-302. 1997.
[12]  Karr, J. E., Alexander, J. E. and Winningham R. G., “Omega-3 polyunsaturated fatty acids and cognition throughout the lifespan”: a review. Nutritional neuroscience, 14 (5): 216-225. 2011.
[13]  Gow, R. W and Hibbeln, J. R., “Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors”. Child and adolescent psychiatric clinics of North America, 23 (3): 555-590. 2014.
[14]  Widenhorn-Müller, K., Schwanda, S., Scholz, E., Spitzer, M. and Bode H., “Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): A randomized placebo-controlled intervention trial”. Prostaglandins, Leukotrienes and Essential Fatty Acids, 91(1-2): 49-60. 2014.
[15]  Agostoni, C., Nobile, M., Ciappolino, V., Delvecchio, G., Tesei, A., Turolo, S., Crippa, A., Mazzocchi, A., Altamura, C. A. and Brambilla P., “The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD”, International journal of Molecular Sciences, 18 (12): 2608. 2017.
[16]  Gbogouri, G. A., Linder, M., Fanni, J. and Parmentier M., “Analysis of lipids extracted from salmon (salar) heads by commercial proteolytic enzymes”. European Journal of Lipid Science and Technology, 9: 766-775. 2006.
[17]  Olusayo, O. E., Olusesan, A. B., Adesola, A. G. “Review of Livestock Feed Formulation Techniques”, Journal of Biology, Agriculture and Healthcare, 3(4), 60-77. 2013.
[18]  AOAC, Official methods of Analysis, 15th Edn. Association of Official Analytical Chemists, Washington DC, 774 p. 1990.
[19]  Livesey, G., “Metabolizable energy of macronutrients”, American. Journal of. Clinical. Nutrition, 62(5 suppl): 1135S-1142S. (1995).
[20]  Adrian, J., Rabache, M. and Fragne R., “Techniques d’analyse nutritionnelle”. In Principes de Techniques d’Analyse. Ed Lavoisier TEC & DOC; Paris: 451-478. 1991.
[21]  Gernah, D. I., Ariahu, C. C., Ingbian E. K., “Nutritional and sensory evaluation of food formulations from malted and fermented maize (Zea mays L.) fortified with defatted sesame (sesamun indicum l.) flour”. African Journal of Food, Agriculture, Nutrition and Development, 12 (6), 6614-6631. (2012).
[22]  Friedewald, W.T., Levy, R.I. and Fredrickson D.S., “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge”. Clinical Chemistry, 18 (6): 499-502. 1972.
[23]  FAO/OMS, Programme mixte FAO/OMS sur les normes alimentaires. Commission du Codex alimentarus: 30ème session du comité du Codex sur la nutrition et les aliments diététiques ou de régime. Rome, Italie, rapport, 2008, 1-223.
[24]  Singh, N., Sandhu, K. S. and Kaur, M. “Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars”. Journal of Food Engineering, 63 (4), 441-449. 2004.
[25]  Temesgen, M., Retta, N. and Tesfaye, E. “Pre-Gelatinized taro flour for development of weaning food in Ethiopia”. International Journal of Food Science and Nutrition, 1 (1), 12-23. 2016.
[26]  Mohanty, B. P., Mahanty, A., Ganguly S., Mitra T., Karunakaran D. and Anandan R. “Nutritional composition of food fishes and their importance in providing food and nutritional security”. Food Chemistry. 2017.
[27]  Combe, N. and Boué-vaysse; C. "Face aux besoins et à la réalité des consommations, quelles sont les spécificités des différentes sources d’acides gras oméga 3 disponibles ?". Oléagineux, Corps Gras, Lipides 11 (2): 103-105. 2004.
[28]  Kris-Etherton, P. M., Taylor, D. S., Yu-Poth, S., Moriarty, K., Fishell, V., Hargrove, R. L., Zhoa, G. and Etherton, T. D. “Polyunsaturated fatty acids in the food chain in the United States”. American Journal of Clinical Nutrition, 71 (1): 179S-188S. 2000.
[29]  Simopoulos, A.P., “An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity”. Nutrients 8 (3): 128. 2016.
[30]  Hassanali, Z., Ametaj, B. N., Field, C. J., Proctor, S.D. and Vine D. F., “Dietary supplementation of n-3 PUFA reduces weight gain and improves postprandial lipaemia and the associated inflammatory response in the obese JCR: LA-cp rat”. Diabetes Obesity and Metabolism, 12 (2): 139-147. 2010.
[31]  Nuernberg, K., Breier, B. H., Jayasinghe, S. N., Bergmann, H., Thompson, N., Nuernberg, G., Dannenberger, D., Schneider, F., Renne, U., Langhammer, M. and Huber K., “Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes”. Nutrition & Metabolism, 8, 56. 2011.
[32]  Hill, J., Peters, J., Lin, D., Yakubu, F., Greene, H. and Swift L., “Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats”. International Journal of Obesity, 17 (4): 223-236. 1993.
[33]  Hun, C., Hasegawa, K., Kawabata, T., Kato, M., Shimokawa, T. and Kagawa Y., “Increased uncoupling protein2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose, and cholesterol in KK-Ay mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linoleic acid”. Biochemical and Biophysical Research Communications, 259 (1): 85-90. 1999.
[34]  Borys, J. M., “Sucres et prise de poids”. Médecine et Nutrition, 37 (1) : 15-18. 2001.
[35]  Jublanc, C and Bruckert, E., “Nouvelles approches nutritionnelles dans le traitement des dyslipidémies”. Médecine thérapeutique/Endocrinologie 4 (4): 219-225. 2002.
[36]  Willumsen, N., Skorve, J., Hexeberg, S., Rustan, A. C. and Berge, R. K., “The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis”. Lipids, 28 (8): 683-690. 1993.
[37]  Francois, A.C., Connor, L.S., Bolewicz, C. L. and Connor E.W., “Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk”. The American journal of clinical nutrition, 77 (1): 226-233. 2003.
[38]  Ukropec, J., Reseland, J. E., Gasperikova, D., Demcakova, E., Madsen, L., Berge, R. K., Rustan, A. C., Klimes, I., Drevon, C. A. and Sebokova E., “The hypotriglyceridemic effect of dietary n-3 FA is associated with increased beta-oxidation and reduced leptin expression”. Lipids, 38 (10): 1023-1029. 2003.
[39]  Calderon, F. and Kim, H.Y., “Docosahexaenoic acid promotes neurite growth in hippocampal neurons”. Journal of Neurochemistry, 90 (4): 979-988. 2004.
[40]  Shrivastava, R., Vincent, B., Gobron, S., Cucuat, N. and John G.W., “Evidence for growth-promoting effects of omega n - 3 fatty acids alone and in combination with a specific vitamin and mineral complex in rat neuroblastoma cells”. Nutritional Neuroscience, 8 (5-6): 317-321. 2005.
[41]  Cao, D., Kevala, K., Kim, J., Moon, H.S., Jun, S.B., Lovinger, D. and Kim, H.Y., “Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function”. Journal of Neurochemistry, 111: 510-521. 2009.
[42]  Robson, L.G., Dyall, S., Sidloff, D. and Michael-Titus A.T., “Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals”. Literature Review in Neurobiology of Aging, 31 (4): 678-687. 2010.