American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2018, 6(1), 17-27
DOI: 10.12691/ajfn-6-1-4
Open AccessArticle

Nutritional and Physical Attributes of Maize-mushroom Complementary Porridges as Influenced by Mushroom Species and Ratio

Jackson R.M. Ishara.1, 2, , Daniel N. Sila2, Glaston M. Kenji2, Ariel K. Buzera1, 2 and Gustave N. Mushagalusa1

1Faculty of Agriculture and environmental sciences, Université Evangélique en Afrique (UEA), P.O. Box 3323-Bukavu/D.R.Congo

2Department of Food Science & Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya

Pub. Date: February 26, 2018

Cite this paper:
Jackson R.M. Ishara., Daniel N. Sila, Glaston M. Kenji, Ariel K. Buzera and Gustave N. Mushagalusa. Nutritional and Physical Attributes of Maize-mushroom Complementary Porridges as Influenced by Mushroom Species and Ratio. American Journal of Food and Nutrition. 2018; 6(1):17-27. doi: 10.12691/ajfn-6-1-4


Child malnutrition is common in developing countries. one of the major contributing factor of the wide-spread problems of malnutrition among infants and children is the use of cereal-based foods, including maize meal porridge that are characterized by low protein content and micronutrients deficiency. This calls for action to develop home based enrichment of traditional foods by exploiting the nutritious foods like mushrooms that are rich in protein and micronutrients content. Nutritional and physical attributes of the maize meal porridges fortified with mushroom (Agaricus bisporus and Pleurotus ostreatus) flours were investigated. The maize flour was replaced with mushroom flours at different levels; a control sample (0%), 10%, 20%, 30%, 40% and 50% of mushroom flour. Increasing both A. bisporus and P. ostreatus flour content resulted in increasing of protein, in vitro-protein digestibility, micronutrients (zinc and iron) and fiber. Furthermore, increasing mushroom content resulted in decreasing of fat, carbohydrates, energy and viscosity. However, adding P. ostreatus flour resulted in increasing of the pH and decreasing of the Total titratable acidity (TTA). On the other hand, increasing the A. bisporus flour resulted in decreasing of the pH and increasing of the TTA. A strong significant (p<0.05) linear correlation (-0.73) was observed between the in vitro-protein digestibility and the viscosity in maize-mushroom porridges. Considering the protein content, micronutrients content, the in vitro-protein digestibility and the decreased viscosity, these fortified porridges can highly contribute to reduce the protein malnutrition and micronutrients deficiency.

fortified porridges mushroom maize porridge nutritional and physical attributes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Lesiapeto M.S. 2009. Factor associated with nutritional status of children aged 0-60 months residing in Eastern Cape and Kwazulu-Natal Provinces. MSc. Thesis, Pochefstroom Campus, North-West University, South Africa.112pp.
[2]  Nnyepi, M., Bandeke, T., & Mahgoub, S. E. O. (2006). Factors affecting prevalence of malnutrition among children under three years of age in Botswana.
[3]  Ogbonnaya JA, Ketiku AO, Mojekwu CN, Mojekwu JN, Ogbonnaya JA. Energy, iron and zinc densities of commonly consumed traditional complementary foods in Nigeria. British Journal of Applied Science & Technology. 2012; 2(1): 48-57.
[4]  Kandala NB, Madungu TP, Emina JB, Nzita KP, Cappuccio FP. Malnutrition among children under the age of five in the Democratic Republic of Congo (DRC): does geographic location matter? BMC public health. 2011; 11:261.
[5]  WHO. (2000). Turning the tide of malnutrition: responding to the challenge of the 21st century. Geneva: (WHO/NHD/00.7).
[6]  United Nations Administrative Committee on Coordination Sub-Committee on Nutrition. 4th Report on The World Nutrition Situation. Geneva: ACC/SCN, 2000.
[7]  Idikut, L., Atalay, A. I., Kara, S. N., & Kamalak, A. D. E. M. (2009). Effect of hybrid on starch, protein and yields of maize grain. Journal of Animal and Veterinary Advances, 8(10), 1945-1947.
[8]  Jackson R.M. Ishara, Daniel N. Sila, Glaston M. Kenji, and Ariel K. Buzera “Nutritional and Functional Properties of Mushroom (Agaricus bisporus & Pleurotus ostreatus) and Their Blends with Maize Flour.” American Journal of Food Science and Technology, vol. 6, no. 1 (2018): 33-41.
[9]  Lartey, A., Manu, A., Brown, K. H., Peerson, J. M., & Dewey, K. G. (1999). A randomized, community-based trial of the effects of improved, centrally processed complementary foods on growth and micronutrient status of Ghanaian infants from 6 to 12 mo of age. The American journal of clinical nutrition, 70(3), 391-404.
[10]  Duggan, C., Watkins, J. B., & Walker, W. A. (2008). Nutrition in pediatrics: basic science, clinical applications. PMPH-USA.
[11]  World Health Organization (WHO). Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. WHO/NUT/98.1. Geneva: WHO, 1998.
[12]  De Pee, S., & Bloem, M. W. (2009). Current and potential role of specially formulated foods and food supplements for preventing malnutrition among 6-to 23-month-old children and for treating moderate malnutrition among 6-to 59-month-old children. Food and nutrition bulletin, 30(3_suppl3), S434-S463.
[13]  Yeung DL. Iron and micronutrients: Complementary food fortification. Food and Nutrition Bulletin. 1998; 19(2): 159-63.
[14]  Dewey KG. The challenge of meeting nutrient needs of infants and young children during the period of complementary feeding: An evolutionary perspective. The Journal of Nutrition. 2013; 143: 2050–2054.
[15]  International Food Policy Research Institute. 2005. An assessment of the causes of malnutrition in Ethiopia. Washington, DC, USA.
[16]  Haileslassie K, Mulugeta A, Girma M. Feeding practices, nutritional status and associated factors of lactating women in Samre Woreda, South Eastern Zone of Tigray, Ethiopia. Nutrition journal. 2013; 12:28.
[17]  World Health Organization. Children: reducing mortality 2013 [20.05.2014]. Available from:
[18]  FAO, W. (2010). The State of Food Insecurity in the World 2010, Addressing food insecurity in protracted crises. WFP, FAO.
[19]  Tewelde, M. G. (2015). Assessment of dietary intake and body mass index in a nutritionally deprived population in rural Democratic Republic of Congo (Master's thesis, The University of Bergen).
[20]  Von Grebmer, K., Ringler, C., Rosegrant, M. W., Badiane, O., Torero, M., Yohannes, Y., ... & Scenery, G. (2011). Global Hunger Index: the challenge of hunger: taming price spikes and excessive food price volatility. In Deutsche Welthungerhilfe, International Food Policy Research Institute, and Concern Worldwide.
[21]  Harvey-Leeson, S., Karakochuk, C. D., Hawes, M., Tugirimana, P. L., Bahizire, E., Akilimali, P. Z., ... & Boy, E. (2016). Anemia and micronutrient status of women of childbearing age and children 6–59 months in the Democratic Republic of the Congo. Nutrients, 8(2), 98.
[22]  Vollmer, S., Harttgen, K., Subramanyam, M. A., Finlay, J., Klasen, S., & Subramanian, S. V. (2014). Association between economic growth and early childhood undernutrition: evidence from 121 Demographic and Health Surveys from 36 low-income and middle-income countries. The lancet global health, 2(4), e225-e234.
[23]  Allen, L. H. (2000). Anemia and iron deficiency: effects on pregnancy outcome. The American journal of clinical nutrition, 71(5), 1280s-1284s.
[24]  Ezzati, M., Lopez, A. D., Rodgers, A., & Murray, C. J. (2004). Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. OMS.
[25]  Bhutta, Z. A., Ahmed, T., Black, R. E., Cousens, S., Dewey, K., Giugliani, E., ... & Shekar, M. (2008). What works? Interventions for maternal and child undernutrition and survival. The lancet, 371(9610), 417-440.
[26]  Hurtado, E. K., Claussen, A. H., & Scott, K. G. (1999). Early childhood anemia and mild or moderate mental retardation. The American journal of clinical nutrition, 69(1), 115-119.
[27]  Maketa, V., Mavoko, H. M., da Luz, R. I., Zanga, J., Lubiba, J., Kalonji, A., & Lutumba, P. (2015). The relationship between Plasmodium infection, anaemia and nutritional status in asymptomatic children aged under five years living in stable transmission zones in Kinshasa, Democratic Republic of Congo. Malaria journal, 14(1), 83.
[28]  Matangila, J. R., Doua, J. Y., Linsuke, S., Madinga, J., da Luz, R. I., Van Geertruyden, J. P., & Lutumba, P. (2014). Malaria, schistosomiasis and soil transmitted helminth burden and their correlation with anemia in children attending primary schools in Kinshasa, Democratic Republic of Congo. PLoS One, 9(11), e110789.
[29]  Mikobi, T. M., Tshilobo, P. L., Aloni, M. N., Lelo, G. M., Akilimali, P. Z., Muyembe-Tamfum, J. J., ... & Mwamba, J. M. M. (2015). Correlation between the lactate dehydrogenase levels with laboratory variables in the clinical severity of sickle cell anemia in Congolese patients. PloS one, 10(5), e0123568.
[30]  Tshilolo, L., Aissi, L. M., Lukusa, D., Kinsiama, C., Wembonyama, S., Gulbis, B., & Vertongen, F. (2009). Neonatal screening for sickle cell anaemia in the Democratic Republic of the Congo: experience from a pioneer project on 31 204 newborns. Journal of clinical pathology, 62(1), 35-38.
[31]  Zimmermann, M. B., & Hurrell, R. F. (2007). Nutritional iron deficiency. The Lancet, 370(9586), 511-520.
[32]  Mamiro, P. S., Kolsteren, P. W., van Camp, J. H., Roberfroid, D. A., Tatala, S., & Opsomer, A. S. (2004). Processed complementary food does not improve growth or hemoglobin status of rural Tanzanian infants from 6-12 months of age in Kilosa district, Tanzania. The Journal of nutrition, 134(5), 1084-1090.
[33]  Gewa, C. A., & Leslie, T. F. (2015). Distribution and determinants of young child feeding practices in the East African region: demographic health survey data analysis from 2008-2011. Journal of Health, Population and Nutrition, 34(1), 6.
[34]  Ferguson, Elaine L., and Nicole Darmon. “Traditional foods vs. manufactured baby foods.” In Issues in Complementary Feeding, vol. 60, pp. 43-63. Karger Publishers, 2007.
[35]  Thatoi, H., & Singdevsachan, S. K. (2014). Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review. African Journal of Biotechnology, 13(4).
[36]  Singla, R., Ganguli, A., & Ghosh, M. (2010). Antioxidant activities and polyphenolic properties of raw and osmotically dehydrated dried mushroom (Agaricus bisporous) snack food. International Journal of Food Properties, 13(6), 1290-1299.
[37]  Roupas, P., Keogh, J., Noakes, M., Margetts, C., & Taylor, P. (2012). The role of edible mushrooms in health: Evaluation of the evidence. Journal of Functional Foods, 4(4), 687-709.
[38]  Edet, U. O., Ebana, R. U. B., Etok, C. A., & Udoidiong, V. O. (2016). Nutrient Profile and Phytochemical Analysis of Commercially Cultivated Oyster Mushroom in Calabar, South-South Nigeria.
[39]  Kalač, P. (2013). A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209-218.
[40]  Kayode, R. M. O., Olakulehin, T. F., Adedeji, B. S., Ahmed, O., Aliyu, T. H., & Badmos, A. H. A. (2015). Evaluation of amino acid and fatty acid profiles of commercially cultivated oyster mushroom (Pleurotus sajor-caju) grown on gmelina wood waste. Nigerian Food Journal, 33(1), 18-21.
[41]  T. W. Wandati, G. M. Kenji and J. M. Onguso, Phytochemicals in edible wild mushrooms from selected areas in Kenya, Journal of Food Research, 2(3), 2013, 137.
[42]  Mowsurni, F. R., & Chowdhury, M. B. K. (2013). Oyster mushroom: Biochemical and medicinal prospects. Bangladesh Journal of Medical Biochemistry, 3(1), 23-28.
[43]  Aremu, M. O., Basu, S. K., Gyar, S. D., Goyal, A., Bhowmik, P. K., & Banik, S. D. (2009). Proximate Composition and Functional Properties of Mushroom Flours from Ganoderma spp., Omphalotus olearius (DC.) Sing. and Hebeloma mesophaeum (Pers.) Quél. sed in Nasarawa State, Nigeria. Malaysian journal of nutrition, 15(2).
[44]  Buyck, B., Eyssartier, G., & Kivaisi, A. (2000). Addition to the inventory of the genus Cantharellus (Basidiomycota, Cantharellaceae) in Tanzania. Nova Hedwigia, 71(3/4), 491-502.
[45]  Haq, I. U., Khan, M. A., Khan, S. A., & Ahmad, M. (2011). Biochemical analysis of fruiting bodies of Volvariella volvacea strain V v pk, grown on six different substrates, 30(2), 146-150.
[46]  Chang S.T. and Miles P.G. (1989). Recent trends in world production of cultivated edible mushroom. Mushroom J. 504: 15-17.
[47]  Hosford, D., Pilz, D., Molina, R., & Amaranthus, M. (1997). Ecology and management of the commercially harvested American matsutake.
[48]  Wong WC. 2002. Chemical composition, functional properties and nutritional values of two groups of mushrooms including eleven edible Pleurotus mushrooms and fifteen other lesser-known edible ones. Thesis of the Chinese University of Hong Kong.182 p.
[49]  Boa, E. R. (2004). Wild edible fungi: a global overview of their use and importance to people (No. 17). Food and Agriculture Organization.
[50]  Jiskani, M. M. (2001). Energy potential of mushrooms. The DAWN economic and business review, 15-21.
[51]  Buigut S.K. 2002. Mushroom production in sustainable small-scale farming system-opportunities and constraints: a survey of Uasin Gishu district. In: Proceedings of the Holticulture seminar on Sustainable Horticultural Production in the Tropics at Jomo Kenyatta, University of Agriculture & Technology, Juja, Kenya, October 3-6, 2001, Kenya.
[52]  Chang, S.T. & Buswell, J.A. 1996. Mushroom nutriceuticals. World Journal of Microbiology and Biotechnology 12: 473-476.
[53]  Radulescu, C., C. Stihi, G. Busuioc, I.V. Popescu, A.I. Gheboianu and V.G.H. Cimpoca. 2010. Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAA spectrometry. Romanian Biotechnological Letters 15(4): 5444-5456.
[54]  Li, T., Y. Wang, J. Zhang, Y. Zhao and H. Liu (2011). Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry 127(4): 1828-1830.
[55]  Grangeia, C.,Heleno, S.A., Barros, L., Martins, A., Ferreira, I.C.F.R. 2011. Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res. Int. 44, 1029-1035.
[56]  Robinson, A. 2011. Fried mushrooms nutritional values. Available at [Accessed 10.06.2011].
[57]  Sadler, M. (2003). Nutritional properties of edible fungi. British Journal of Nutrition, 28, 305-308.
[58]  Sanmee R, Dell B, Lumyong P, Izumori K,Lumyong S. 2003. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem. 82: 527-532.
[59]  Genders, R. 1990. Mushroom growing for everyone. 3rd Ed. Faber and Faber, London.
[60]  Chittaragi A, Naika R. 2014. Study on primary biochemical and physicochemical properties of Ganoderma sinense from forest regions of Shimoga (D), Karnataka. Arch AppSci Res. 6 (4): 103-108.
[61]  Manzi, P., Aguzzi, A. and Pizzoferrato, L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chemistry 73(3): 321-325.
[62]  Ita, B.N., J.P. Essien and G.A. Ebong. 2006. Heavy metal levels in fruiting bodies of edible and non-edible mushrooms from the Niger Delta Region of Nigeria, Journal of Agriculture & Social Sciences 2: 84-87.
[63]  Anonymous. 2003. Mushrooms. National Research Centre for Mushroom, Indian Council of Agriculture Research, Chambaghat 173-213, Solan, Himachal Pradesh, India, available at [Accessed 18.12.2003].
[64]  Lepsova, A., Mejestrik, V. 1988. Accumulation of trace elements in fruiting bodies of macrofungi in the Krusne Hory Mountains. Czecholovakia Sci Total Environ 76, pp. 117-128.
[65]  Akyüz, M., Kirbað, S. 2010. Nutritive value of wild edible and cultured mushrooms. Turk J Biol, 34, pp. 97-102.
[66]  Due, E. A., Michel, K. D., & Digbeu, Y. D. (2016). Physicochemical and Functional Properties of Flour from the Wild Edible Mushroom Termitomyces heimii Natarajan Harvested in Côte d’Ivoire. Turkish Journal of Agriculture-Food Science and Technology, 4(8), 651-655.
[67]  AOAC (2000). Association of Official Analytical Chemists. Official methods of analysis. Washington, DC. USA.
[68]  FAO. Food energy-Methods of analysis and conversion factors: Report of a technical workshop, Rome, 2002. FAO Food and Nutrition Paper No. 77. 2003.
[69]  Mertz T. E.; Hassan M. M.; Whittern C. C.; Kirleis W.A. and Axtell D. J. (1984). Pepsin Digestibility of proteins in sorghum and other major cereals. Applied Biology. 81: 1-2.
[70]  IAL - Instituto Adolfo Lutz. Normas analíticas do instituto Adolfo Lutz: métodos físicos e químicos de análises de alimentos. 4. ed. São Paulo, 2008, 1020p.
[71]  Mouquet, C., and Treche, S. (2001). Viscosity of gruels for infants: a comparison of measurement procedures. International Journal of Food Sciences and Nutrition 52: 389-400.
[72]  Mburu, M. W., Gikonyo, N. K., Kenji, G. M. &, & Mwasaru, A. M. (2011). Properties of a complementary food based on amaranth grain (Amaranthus cruentus) Grown in Kenya. Journal of Agriculture and Food Technology, 1(9), 153-178.
[73]  Arukwe, U., B. A. Amadi, M. K. C. Duru, E. N. Agomuo, E. A. Adindu, P. C. Odika, K. C. Lele, L. Egejuru, and J. Anudike. “Chemical composition of Persea americana leaf, fruit and seed.” IJRRAS 11, no. 2 (2012): 346-349.
[74]  Okafor JNC, Okafor GI, Ozumba AU, Elemo GN. 2012. Quality characteristics of bread made from wheat and Nigerian oyster mushroom (Pleurotus plumonarius) powder, Pakistan Journal of Nutrition, 11(1): 5-10.
[75]  Farzana, T., & Mohajan, S. (2015). Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food science & nutrition, 3(5), 363-369.
[76]  Ekunseitan, O. F., Obadina, A. O., Sobukola, O. P., Omemu, A. M., Adegunwa, M. O., Kajihausa, O. E., ... & Keith, T. (2016). Nutritional composition, functional and pasting properties of wheat, mushroom, and high-quality cassava composite flour. Journal of Food Processing and Preservation.
[77]  Friel, J. K., Hanning, R. M., Isaak, C. A., Prowse, D., & Miller, A. C. (2010). Canadian infants' nutrient intakes from complementary foods during the first year of life. BMC pediatrics, 10(1), 43.
[78]  Kalagbor. I and Diri E. (2014). Evaluation of heavy metals in Orange, pineapple, avocado pear and pawpaw from a farm in Kaani, Bori. Rivers State Nigeria. International Research Journal of Public Environment Health 1(4):87-94.
[79]  Dewey, K. (2002). Guiding principles for complementary feeding of the breastfed child.
[80]  Michaelsen, K. F. (2000). Feeding and nutrition of infants and young children: guidelines for the WHO European region, with emphasis on the former Soviet countries (No. 87). WHO Regional Office Europe.
[81]  WHO (2010) World Health Statistics 2010. World Health Organization. WHO Library Cataloguing-in-Publication Data. ISBN 978 92 4 156398 7.
[82]  Zlotkin, S. H., & Cherian, M. G. (1988). Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatric research, 24(3), 326-329.
[83]  Tenagashaw, M. W., Kinyuru, J. N., Kenji, G. M., Melaku, E. T., & Susanne, H. K. (2017). Nutrient Density of Complementary Foods Formulated from a Blend of Teff, Soybean and Orange-fleshed Sweet Potato. International Journal of Food Science and Nutrition Engineering, 7(4), 61-69.
[84]  WHO/UNICEF. Complementary feeding of young children in developing countries: A review of the current scientific knowledge. Geneva: World Health Organization; 1998.
[85]  Codex Alimentarius Comission. Codex standard for processed cereal-based foods for infants and young children (CODEX STAN 074-1981, REV. 1-2006). 2006. p. 1-9.
[86]  Koletzko B, Baker S, Cleghorn G, Neto UF, Gopalan S, Hernell O, et al. Global standard for the composition of infant formula. Japanese Pharmacology and Therapeutics. 2010; 38(8): 689-710.
[87]  Amagloh, F. K., Hardacre, A., Mutukumira, A. N., Weber, J. L., Brough, L., & Coad, J. (2012). A household‐level sweet potato‐based infant food to complement vitamin A supplementation initiatives. Maternal & child nutrition, 8(4), 512-521.
[88]  PAHO/WHO. Guiding principles for complementary feeding of the breastfed child. Global consultation on complementary feeding. Washington, D.C., Pan American Health Organization; 2003.
[89]  Dewey KG, Adu-afarwuah S. Systematic review of the efficacy and effectiveness of complementary feeding interventions in developing countries. Maternal and Child Nutrition. 2008; 4: 24-85.
[90]  Akande, O. A., Nakimbugwe, D., & Mukisa, I. M. (2017). Optimization of extrusion conditions for the production of instant grain amaranth‐based porridge flour. Food science & nutrition, 5(6), 1205-1214.
[91]  WHO/FAO/UNU Expert Consultation. (2007). Protein and amino acid requirements in human nutrition, report of a joint WHO/FAO/UNU expert consultation. World Health Organization Technical Report No. 935. Geneva: World Health Organization.
[92]  Damodaran, S. (1996). Amino acids, peptides, and proteins (edited by Fennema O.R.) Pages 321–42 New York: Marcel Dekker.
[93]  Ogodo, A. C., Ugbogu, O. C., Onyeagba, R. A., & Okereke, H. C. (2017). Effect of Lactic Acid Bacteria Consortium Fermentation on the Proximate Composition and in-Vitro Starch/Protein Digestibility of Maize. American Journal of Microbiology and Biotechnology, 4(4), 35-43.
[94]  Muoki, P. N. (2013). Nutritional, rheological and sensory properties of extruded cassava-soy complementary porridges (Doctoral dissertation, University of Pretoria).
[95]  Zarkadas, C.G., Hamilion, R.I., Yu, Z.R., Choi, V.K., Khanizadeh, S., Rose, N.G.W., and Pattison, P.L. (2000). Assessment of the protein quality of 15 new Northern adapted cultivars of quality protein maize using amino acid analysis. Journal of Agricultural and Food Chemistry 48: 5351-5361.
[96]  Moughan, P.J., and Rutherfurd, S.M. (2008). Available lysine in foods: A brief historical overview. Journal of AOAC International 91: 901-906.
[97]  Hurrell, R.F., Lerman, P., and Carpenter, K.J. (1979). Reactive lysine in foodstuffs as measured by rapid dye-binding procedure. Journal of Food Science 44: 1221-1231.
[98]  Ejigui J, Savoie L, Marin J, Desrosiers T (2007). Improvement of the nutritional quality of a traditional complementary porridge made of fermented yellow maize (Zea mays): Effect of maize-legume combinations and traditional processing methods. Food Nutr. Bull. 28: 23-34.
[99]  Singh, S., C. G. Kumar, and S. Singh. 1995. Production, processing and consumption pattern of mushrooms. Indian Food Packer 14: 38-47.
[100]  Kwok, K.C., Shui, Y.W., and Niranjan, K. (1998). Effect of thermal processing on available lysine, thiamine and riboflavin content of soymilk. Journal of the Science of Food and Agriculture 77: 473-478.
[101]  Muyonga, J. H., Andabati, B., & Ssepuuya, G. (2014). Effect of heat pro- cessing on selected grain amaranth physicochemical properties. Food Science and Nutrition, 2(1), 9-16.
[102]  Chang, S. T., & Mshigeni, K. E. (2004). Mushrooms and human health: their growing significance as potent dietary supplements. Windhoek, Namibia: University of Namibia.
[103]  Griffith, Katherine, and et al. 2000 Agriculture in Monteverde: Moving toward Sustainability.”. In In Monteverde: Ecology and Conservation of a Tropical Cloud Forest. N. Nadkarin and N. Wheelwright, eds. Oxford: Oxford Universirty Press.
[104]  Fan WJ, Sun JX, Chen YC, Qiu J, Zhang Y, Chi YL (2009) Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem 115: 66-70.
[105]  Inyang, C. U., & Idoko, C. A. (2006). Assessment of the quality of ogi made from malted millet. African Journal of Biotechnology, 5(22).
[106]  Ndife, J., Kida, F., & Fagbemi, S. (2014). Production and quality assessment of enriched cookies from whole wheat and full fat soya. European Journal of Food Science and Technology, 2(1), 19-28.
[107]  Akpinar-Bayizit, A., Ozcan-Yilsay, T., & Yilmaz, L. (2007). Study on the use of yoghurt, whey, lactic acid and starter culture on carrot fermentation. Polish journal of food and nutrition sciences, 57(2), 147-150.
[108]  Mosha, A. C., & Svanberg, U. (1983). Preparation of weaning foods with high nutrient density using flour of germinated cereals. Food Nutr Bull, 5(2), 10-14.
[109]  Walker, A. F. (1990). The contribution of weaning foods to protein–energy malnutrition. Nutrition research reviews, 3(1), 25-47.
[110]  Treche, S. (1999). Viscosity, energy density and osmolality of gruels for infants prepared from locally produced commercial flours in some developing countries. International journal of food sciences and nutrition, 50(2), 117-125.
[111]  Onyango, C., Henle, T., Hofmann, T., & Bley, T. (2004). Production of high energy density fermented uji using a commercial alpha-amylase or by single-screw extrusion. LWT-Food Science and Technology, 37(4), 401-407.
[112]  Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food hydrocolloids, 23(6), 1527-1534.
[113]  Rombo, G. O., Taylor, J., & Minnaar, A. (2004). Irradiation of maize and bean flours: effects on starch physicochemical properties. Journal of the Science of Food and Agriculture, 84(4), 350-356.
[114]  Lai, L. S., & Kokini, J. L. (1991). Physicochemical changes and rheological properties of starch during extrusion. (A review). Biotechnology progress, 7(3), 251-266.
[115]  Jenkins, P. J., & Donald, A. M. (1998). Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydrate research, 308(1), 133-147.
[116]  Lagarrigue, S., & Alvarez, G. (2001). The rheology of starch dispersions at high temperatures and high shear rates: a review. Journal of Food Engineering, 50(4), 189-202.
[117]  Atwell, W.A., Hood, L.F., Lineback, D., Varriano-Maiston, E., and Zobel H.F. (1988). The terminology and methodology associated basic starch phenomena. Cereal Chemistry 33:1-4.
[118]  Goodfellow, B. J., & Wilson, R. H. (1990). A Fourier transform IR study of the gelation of amylose and amylopectin. Biopolymers, 30(13‐14), 1183-1189.
[119]  Svihus, B., Uhlen, A. K., & Harstad, O. M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Animal Feed Science and Technology, 122(3), 303-320.
[120]  Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., & Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 76, 629-637.
[121]  Kuar, K., and Singh, J. (2000). Amylose-lipid complex formation during cooking of rice flour. Food Chemistry 71: 511-517.
[122]  Wokadala, O. C., Ray, S. S., & Emmambux, M. N. (2012). Occurrence of amylose–lipid complexes in teff and maize starch biphasic pastes. Carbohydrate polymers, 90(1), 616-622.
[123]  Bejosano, F., and Corke, H. (1998). Effect of Amaranthus and buck-wheat protein concentrates on wheat dough properties and on noodle quality. Cereal Chemistry 75: 171-176.
[124]  Mouquet-Rivier, C., Icard-Vernierei, C. Guyoti, J. Tou, H. Rochette, I. and Treche, S. (2008). Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. International Journal of Food Sciences and Nutrition 59: 716-726.
[125]  Lorri W, Svanberg U. Lactic acid-fermented cereal gruels: Viscosity and flour concentration. International Journal of Food Sciences and Nutrition. 1993; 44(3): 207-13.