American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2017, 5(4), 121-125
DOI: 10.12691/ajfn-5-4-2
Open AccessArticle

Antioxidant Potential of Stem Bark Extract of Shorea roxburghii against CCl4 induced Liver Damage in Wistar Rats

V. Menakapriya1, K. Karthikarathi1, R. Subramanian1, 2, , A. Kathirvel1 and V. Raj3

1Department of Chemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamilnadu, India

2Department of Chemistry, Sun Arts and Science College, Tiruvannamalai, Tamilnadu, India

3Department of Chemistry, Periyar University, Salem, Tamilnadu, India

Pub. Date: September 29, 2017

Cite this paper:
V. Menakapriya, K. Karthikarathi, R. Subramanian, A. Kathirvel and V. Raj. Antioxidant Potential of Stem Bark Extract of Shorea roxburghii against CCl4 induced Liver Damage in Wistar Rats. American Journal of Food and Nutrition. 2017; 5(4):121-125. doi: 10.12691/ajfn-5-4-2


The aim of the present study was to evaluate the antioxidant potential of the stem bark extract of Shorea roxburghii (S. roxburghii) on CCl4 induced liver toxicity. Stem bark extract of Shorea roxburghii (SRE) was prepared using ethyl acetate. Administration of S. roxburghii inhibited the elevation marker enzymes such as aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) and liver lipid peroxides in CCl4-treated Wistar rats. The natural antioxidant enzymes such catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and lipid peroxidation were significantly improved after the treatment of S.roxburghii. In this study, the results indicate that S.roxburghii can inhibit lipid peroxidation and improve the activities of antioxidant enzymes. The quantitative analysis of biochemical parameters, marker enzymes, antioxidant activities and histological study suggest the administration of the stem bark extract of S.roxburghii protecting the liver from CCl4 toxicity.

antioxidant activity Shorea roxburghii liver liver markers CCl4 toxicity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Gates, L., Paul, J., Ba, G.N. and Tew, K.D. Oxidative stress induced in pathologies: The role of antioxidants. Biomedicine & Pharmacotherapy 53, 169-180, 1999.
[2]  Desai, S.N., Patel, D.K., Devkar, R.V., Patel, P.V. and Ramachandran, A.V. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study. Food and Chemical Toxicology 50, 310-314, 2012.
[3]  Jain, M., Kapadia, R., Jadeja, R.N., Thounaojam, M.C., Devkar, R.V. and Mishra, S.H. Protective role of standardized Feronia limoniastem stem bark methanolic extract against carbon tetrachloride induced hepatotoxicity. Annals of Hematology 11, 935-943, 2012.
[4]  Kandimalla, R., Kalita, S., Saikia, B., Choudhury, B., Singh, Y.P., Kalita, K., Dash, S. and Kotoky, J. Antioxidant and hepatoprotective potentiality of Randia dumetorum lam leaf and bark via inhibition of oxidative stress and inflammatory cytokines. Frontier in Pharmacology 7, 205, 2016.
[5]  Wahid, A., Hamed, A. N., Eltahir, H. M. and Abouzied, M. M. Hepatoprotective activity of ethanolic extract of Salix subserrata against CCl4-induced chronic hepatotoxicity in rats. BMC Complementary and Alternative Medicine 16, 1216-1238, 2016.
[6]  Mascolo, N., Sharma, R., Jain, S. C. and Capasso. F. Ethnopharmacology of Calotropis procera flowers. Journal of Ethnopharmacology 22, 211-44, 1998.
[7]  Liu, J., Wen, J. F., Kan, X. Y.J. and Jin. C. H. Antioxidant and protective effect of inulin and catechin grafted insulin against CCl4 -induced liver injury. International Journal of Biology and Macromolecules 72, 3-5, 2015.
[8]  Rofiee, M. S., Yusof, M. I. M., Abdul Hisam, E. E., Bannur, Z., Zakaria et al. Isolating the metabolic pathways involved in the hepatoprotective effect of Muntingia calabura against CCl4-induced liver injury using LC/MS Q-TOF. Journal of Ethnopharmacology 166, 109-118, 2015.
[9]  Denis, M. C., Furtos, A., Dudonné, S., Montoudis, A., Garofalo, C., Desjardins, Y et al. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. PLoS One 8, 53725, 2013.
[10]  Khan, R. A. Protective effects of Launaea procumbens on rat testis damage by CCl4. Lipids in Health and Diseases 11, 103, 2012.
[11]  Ozturk, F., Ucar, M., Ozturk, I.C., et al. Carbon tetrachloride-induced nephrotoxicity and protective effect of betaine in Sprague-Dawley rats. Urology 62, 353-356, 2003.
[12]  Jacobs, B. P., Dennehy, C. and Ramirez, G. Milk thistle for the treatment of liver disease: A systematic review and meta-analysis. American Journal of Medicine 113, 506-515, 2002.
[13]  Abenavoli, L., Capasso, R., Milic, N. and Capasso, F. Milk thistle in liver diseases: Past, present, future. Phytotherapy Research 24, 1423-32, 2010.
[14]  Khan RA, Khan MR, Sahreen S: Evaluation of Launaea procumbens use in renal disorders: a rat model. J Ethnopharmacol 2010, 128: 452-461.
[15]  Rotruck, J. T., Pope, A.L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. Selenium; biochemical role as a component of glutathione peroxidase; Science 179, 588-590, 1979.
[16]  Kakkar, P., Das, B., Vishwanathan, P. N. A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics 21, 130-132, 1984.
[17]  Habig, W.H., Pabst, M.J. and Jakoby, W.B. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. Journal Biological Chemistry 249, 7130-7139, 1974.
[18]  Okawa, H. N., Ohishi, K. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction; Analytical Biochemistry 95, 351-358, 1979.
[19]  Reitmann, S. and Frankel. S. A colorimetric method for the determination of serum oxaloacetic and glutamic pyruvate transminases. American Journal of Clinical Pathology 28, 56-63, 1957.
[20]  Kind, P. R. M. and King, E. J. In-vitro determination of serum alkaline phosphatase. Journal of Clinical Pathology 7, 321-22, 1972.
[21]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall. Protein measurement with the Folin phenol reagent. Journal of Biochemistry, 193-265, 1951.
[22]  W. J. Brattin, E. A. Glende, R. O. Recknagel, Pathological mechanisms in carbon tetrachloride hepatotoxicity. Free Radical Biology Medicine 1, 27-28, 1985.
[23]  Yeh, Y. H., Hsieh, Y. L., Lee, Y. T. and Hu, C. C. Protective effects of Geloinaeros extract against carbon tetrachloride-induced hepatotoxicity in rats. Food Research International 48, 551-558, 2012.
[24]  Abou-Seif, M.A. and Youssef, A.A. Evaluation of some biochemical changes in diabetic patients. Clinica Chimica Acta 346, 161-170, 2004.
[25]  Carini, R., Parola, M., Dianzani, M.U. and Albano, E. Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate. Archives of Biochemistry and Biophysics 297, 110-118, 1992.
[26]  Blake, D.R., Allen, R.E. and Lunec, J. Free radicals in biological systems? a review orientated to inflammatory processes. Brazilian Medical Bullectin 43, 371-385, 1987.
[27]  Samini, F., Samarghandian, S., Borji, A., Mohammadi, G. and Bakaian, M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacology and Biochemical Behavior 110, 238-244, 2013.
[28]  Chandrashekhar, V. M., Muchandi, A.A., Sudi, S. V. and Ganapty, S. Hepatoprotective activity of Stereospermum suaveolens against CCl4-induced liver damage in albino rats. Pharmaceutical Biology 48, 524-528, 2010.
[29]  Hewawasam, R.P., Jayatilaka, K.A.P.W., Pathirana, C. and Mudduwa, L.K.B. Hepatoprotective effect of Epaltes divaricata extract on carbon tetrachloride induced hepatotoxicity in mice. Indian Journal of Medical Research 120, 30-34, 2004.