American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2017, 5(2), 58-61
DOI: 10.12691/ajfn-5-2-2
Open AccessArticle

Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition

Truc Mai1, 2, , Phuc Nguyen3, Trung Vo3, , Hieu Huynh3, Son Tran3, Tran Nim3, Dat Tran3, Hung Nguyen3 and Phung Bui3

1Department of Molecular Biology, New Mexico State University, New Mexico, USA

2Department of Plant and Environmental Sciences, New Mexico State University, New Mexico, USA

3Department of Biochemistry and Toxicology, Nguyen Tat Thanh University, Viet Nam

Pub. Date: April 22, 2017

Cite this paper:
Truc Mai, Phuc Nguyen, Trung Vo, Hieu Huynh, Son Tran, Tran Nim, Dat Tran, Hung Nguyen and Phung Bui. Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition. American Journal of Food and Nutrition. 2017; 5(2):58-61. doi: 10.12691/ajfn-5-2-2


The effect of nutrient starvation on lipid accumulation of Dunaliella salina A9 was studied. In nutrient starvation, cell colour changed from green to yellow (or orange) and cell growth reached stationary phase after 9 days of the culture. The study showed that under nutrient stress, decreased in cell growth is accompanied by carotenoid biosynthesis and lipid content of Dunaliella salina. The results of this study can be used to increase carotenoid and lipid production in microalgae for functional food and biofuel in the future.

Dunaliell salina A9 Dunaliella bardawil and Sulfo-phospho-vanillin reagent

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Ben-Amotz, A., “Effect of irradiance and nutrition deficiency on the chemical composition of D. bardawil (Volvocales, Chlorophyta)”, J. Plant Physiol., 1987), 131. 479-487.
[2]  Ben-Amotz, A. and Avron, M., “On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil”, Plant Physiol., 1983, 72. 593-597.
[3]  Ben-Amotz, A., Katz, A. and Avron, M., “Accumulation of ß-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae)” J. Phycol., 1982, 18. 529-537.
[4]  Bhosale, R. A., Rajabhoj, M. P. and Chaugule, B. B., “Dunaliella salina Teod. as a prominent source of Eicosapentaenoic acid”, Inter. J. Algae, 2010, 12 (2). 185-189.
[5]  Bonnefond, H., Moelants, N., Talec, A., Mayzaud, P., Bernard, O. and Sciandra, A., “Coupling and uncoupling of triglyceride and β-carotene production by Dunaliella salina under nitrogen limitation and starvation”, Biotechnol Biofuels, 2017, 10 (25).
[6]  Borowitzka, M. and Siva, J., “The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species”, Appl Phycol., 2007, 19(5). 567-590.
[7]  Borowitzka, M., “Microalgae as sources of pharmaceuticals and other biologically active compounds”, J Appl. Phycol., 1995, 7. 3-15.
[8]  Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K.Y. S., Salley, S. O., “Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta”, Bioresource Technology, 2011, 102. 1649-1655.
[9]  Gao, Y., Yang, M., Wang, C., “Nutrient deprivation enhances lipid content in marine microalgae”, Bioresource Technology, 2013, 147. 484-491.
[10]  Gómez, P. I. and González, M. A., “The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory condition”, Biol. Res., 2005, 38(2-3). 151-162.
[11]  Griffiths, M. and Harrison, S., “Lipid productivity as a key characteristic for choosing algal species for biodiesel production”, J. Appl. Phycol., 2009, 21. 493-507.
[12]  Hadi, M. R., Shariati, M., Afsharzadeh, S., “Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran”, Biotechnol. Bioproc. Eng., 2008, 13. 540-544.
[13]  Hejazi, M. A. and Wijffels, R. H., “Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors”, Biomolecular Engineering, 2003, 20(4-6). 171-175.
[14]  Jiménez, C. and Pick, U., “Differential stereoisomer composition of β, β-carotene in thylakoids and in pigment globules in Dunaliella”, J. Plant Physiol., 1994, 143. 257-263.
[15]  Khozin-Goldberg, I., Yu, H. Z., Adlerstein, D., Didi-Cohen, S., Heimer, Y. M., Cohen, Z., “Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids”, Lipids, 2000, 35. 881-889.
[16]  Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C. W. and Park, M. S., “Methods of downstream processing for the production of biodiesel from microalgae”, Biotechnology Advances, 2013, 31 (6). 862-876.
[17]  Krót, M., Maxwell, D. P., Huner, P. A., “Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of Carotenoids and the carotenoid binding proteins (Cbr)”, Plant Cell Physiol., 1997, 38(2). 213-216.
[18]  Lamers, P. P., van de Laak, C. C., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C., Bino, R. J., Wijffels, R. H., “Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina”, Biotechnology and Bioengineering, 2010, 106(4). 638-48.
[19]  Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N., “Biofuels from microalgae”, Biotechnol.Prog., 2008, 24. 815-820.
[20]  Lemoine, Y. and Schoefs, B., “Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress”, PsynR, 2010, 106. 155-157.
[21]  Lv, H., Cui, X., Wahid, F., Xia, F., Zhong, C., Jia, S., “Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation”, PLOS ONE, 2016, 11(3). 1-19.
[22]  Mendoza, H., Martel, A., Jiménez del Río, M. and García Reina, G., “Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina” J. Appl. Phycol., 1999, 11. 15-19.
[23]  Mishra S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., Yang, J. W., “Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method”, Bioresource Technology, 2014, 155. 330-333.
[24]  Mofeed, J., “Effects of salinity and light intensity on production of β-carotene and Glycerol from the halotolerant alga Dunaliella salina (Chlorophyta) isolated from Zaranik Nature Reserve, North Sinai (Egypt)”, Egypt. J. Exp. Biol. (Bot.), 2015, 11(1). 21-29.
[25]  Orset, S. and Young, A. J., “Low –temperature-induced synthesis of α- carotene in the microalga Dunaliella salina (Chlorophyta)”, J. Phycol., 1999, 35(3). 520-527.
[26]  Otaga, J. Y., Hagiwara, Y., Hagiwara, H. and Shibamoto, T., “Inhibition of malonaldehyde formation by antioxidants from ω3 polyunsaturated fatty acids”, J. Amer. Oil. Chem. Soc., 1996, 73(5). 653-656.
[27]  Otles, S. and Pire, R., “Fatty acid composition of Chlorella and Spirulina microalgae species”, Journal of AOAC International, 2001, 84(6). 1708-1714.
[28]  Polle, J.E.W, Tran, D. and Ben-Amotz, A., “History, Distribution and Habitats of Algae of the Genus Dunaliella TEODORESCO (Chlorophyceae)”, The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology, Ben-Amotz, A., J.E.W. Polle and D.V.S. Rao (Eds.), Science Publishers, Enfield, 2009. 1-13.
[29]  Quoc, K. P. and Pascaud, M., “Effects of dietary γ-l inoleic acid on the tissue phospholipid fatty acid composition and the synthesis of eicosanoids in rats”, Annals of Nutrition and Metabolism, 1996, 40(2). 99-108.
[30]  Rabbani, S., Beyer, P., Lintig, J., Hugueney, P., Kleinig, H. “Induced β-carotene synthesis driven by Triacyglycerol deposition in the unicellular alga Dunaliella bardawill”, Plant physiology, 1998, 116. 1239-1248.
[31]  Rougan, G. P., “Spirulina: a source of dietary gamma-linoleic acid”, J. Sci. Food Agric., 1989, 47(1). 85-93.
[32]  Saito, T. and Oka, N., Scientific reports on Chlorella in Japan, Japan Treatment Association, Silpaque Publishing, Kyoto, Japan, 1992.
[33]  Shifrin, N. S., Chisholm, S. W., “Phytoplankton lipids: inter specific differences and effects of nitrate, silicate and light-dark cycles”, J. Phycol., 1981, 17. 374-384.
[34]  Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Simon, Ng. K. Y., Salley, S. O., “Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel”, Applied Energy, 2010, 88(10), 3324-3330.
[35]  Thompson, G.A. Jr. “Lipids and membrane function in green algae”, Biochim Biophys Acta., 1996, 1302. 17-45.
[36]  Tran, D., Doan, N., Louime, C., Giordano, M., Portilla, S. “Growth, antioxidant capacity and total carotene of Dunaliellasalina DCCBC15 in a low cost enriched natural seawater medium”, World Journal of Microbiology and Biotechnology, 2014a, 30 (1). 317-322.
[37]  Tran, D., Mai, T., Vo, T., Ward, A., Nguyen, H., Hoang, X. “Lipid Signal Can Be An Additional Marker For The Detection Of Dunaliella Salina”, Wulfenia Journal, 2014b, 21(12). 216-233.
[38]  Tran K., Identification of new local isolated Dunaliella strains using ITS (Internal Transcribed Spacers) markers [thesis], [Ho Chi Minh (VN)], International University, 2014.
[39]  Vo, T. and Tran, D., “Carotene and Antioxidant capacity of Dunaliella salina strains”, World Journal of Nutrition and Health, 2014, 2(2), 21-23.
[40]  Yao, S., Lu J., Sárossy, Z., Baggesen, C., Brandt, A., An, Y. “Neutral lipid production in Dunaliella salina during osmotic stress and adaptation”, 2016, 28(4). 2167-2175.
[41]  Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., Cetiner, S. “Oxidative Stress is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina strain”, PLoS ONE, 2014, 9(3), e91957.