American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: http://www.sciepub.com/journal/ajfn Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
Go
American Journal of Food and Nutrition. 2020, 8(4), 101-112
DOI: 10.12691/ajfn-8-4-1
Open AccessArticle

Hepatoprotective Effects of Mulberries and Cape gooseberry on Thioacetamide Induced Liver Injury in Rats

Hanaa S. M. Abd El-Rahman1, , Nasra A. Abd-Elhak1 and Nahed L. Zaki1

1Food Technology Research Institute, Agric. Res. Center, Giza, Egypt

Pub. Date: November 24, 2020

Cite this paper:
Hanaa S. M. Abd El-Rahman, Nasra A. Abd-Elhak and Nahed L. Zaki. Hepatoprotective Effects of Mulberries and Cape gooseberry on Thioacetamide Induced Liver Injury in Rats. American Journal of Food and Nutrition. 2020; 8(4):101-112. doi: 10.12691/ajfn-8-4-1

Abstract

The objective of this study was to evaluate the hepatoprotective effects of black mulberry, white mulberry and cape gooseberry on the thioacetamide (TAA)-induced rats hepatocytes damage in vivo. The data showed that significant differences in the total phenolics and total flavonoids content, between the black mulberry, white mulberry and cape gooseberry. These findings revealed that black mulberry had more total antioxidant activity. The highest levels of glucose, fructose and arabinose were detected in white mulberry. The 54 male albino rats used separately into nine groups of 6 rats each group for 4 weeks as follows: Group 1 served as a normal control. Groups 2-9: Rats injected with TAA (100 mg/kg, i.p.) twice a week. Group 2 kept as positive control. Groups 3 and 4 were given 5 and 10 ml/kg b.w rat of black mulberry. Group 5 and 6 were administered 5 and 10 ml/kg b.w rat of white mulberry. Groups 7 and 8 received 5 and 10 ml/kg b.w rat of cape gooseberry. Finally, Group 9 was treated daily with silymarin (100 mg/kg). The effects were compared with a known hepatoprotective agent and silymarin. Alteration in the morphological and the levels of biochemical markers of hepatic damage were studied in the groups. TAA has elevated the liver function, kidney function, lipid profile and MDA levels and reduced the serum levels of albumin, HDL cholesterol, and CAT. Treatments with black mulberry, white mulberry and cape gooseberry juices brought back the altered levels of biochemical markers to the near normal levels at doses independently. Histological examination of the liver tissues confirmed the hepatoprotective effect of fruits juices. These results were documented by the amelioration signs in rat’s hepatic architecture. Conclusion: our study demonstrated the ameliorative effects of black mulberry, white mulberry and cape gooseberry juices against TAA induced hepatotoxicity in rats.

Keywords:
black mulberry white mulberry cape gooseberry antioxidants liver fibrous

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  El-Baz, F. K.; Abeer, Salama. and Rania, A. A. and Salama (2019).Therapeutic Effect of Dunaliellasalina Microalgae on Thioacetamide- (TAA-) Induced Hepatic Liver Fibrosis in Rats: Role of TGF-β and MMP9. Bio. Med. Res. Inter. Article ID 7028314, 9 pages https://doi.org/10.1155/2019/7028314.
 
[2]  Friedman, S. L. (2003). “Liver fibrosis—from bench to bedside,” J. of Hepatology38: S38-S53,
 
[3]  Bataller, R.and D. A. Brenner. (2005). “Liver fibrosis,” J. of Clin.Invest.115( 2): 209-218.
 
[4]  Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S. and Chiu, C.H. (2012). Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J Nutr. Bio.Chem 23: 1352-1366.
 
[5]  Lu,Y.; Hu, D.; Ma, S.; Zhao, X.; Wang, S. and Wei, G. (2016). Protective effect of wedelolactone against CCl4-induced acute liver injury in mice. Int. Immuno pharmaco l34:44-52.
 
[6]  Marciniak, S.; Wnorowski, A.; Smolińska, K.; Walczyna, B.; Turski, W.; Kocki, T.; Paluszkiewicz, P.; and Parada-Turska, J. (2018). Kynurenic Acid Protects against Thioacetamide-Induced Liver Injury in Rats. Analy. Cell. Path. 14:1-11
 
[7]  WHO (1993). Regional office for western pacific research guidelines for evaluating safety and efficacy of herbal medicines, Manila, 94.
 
[8]  Aruna G.R.; Geetha, M. Y. and Manjunath, G. (2017).Chemical composition and pharmacological functions and principles of mulberry: A Review. Inter. J. of Appl. Rese. 3(4): 251-254.
 
[9]  Kumar, V. and Chauhan, S. (2008). Mulberry: Life enhancer. J. Med. Plant. Res. 2(10): 271-278.
 
[10]  Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A. and Armand, R. (2015). The application of Medicinal Plants in Tradicional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 6, 635-642.
 
[11]  Mena, P.; Sánchez-Salcedo, E.M.; Tassoti, M.; Martínez, J.J.; Hernández, F.; Del Rio, D. (2016). Phytochemicalevaluation of eight white (Morusalba L.) and black (Morusnigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSnmetabolomic profiles. Food Res. Int. 89: 1116-1122.
 
[12]  Elisana, L. R.; Gabriela, M.; Gabriela, T.S.; Priscila, S. F.; Walmir, S. G.; Joaquim C.; Rita de Cássia, A. G .andKarine de Cássia, F. (2019). Nutraceutical and Medicinal Potential of the Morus Species in Metabolic Dysfunctions.Int. J. Mol. Sci. 20, 301.
 
[13]  Fallon, E.; Zhong, L.; Furne, J.K. and Levitt, M.D. (2008). A mixture of extracts of black and green teas and mulberry leaf did not reduce weight gain in rats fed a high-fat diet. Altern. Med Rev. 13(1): 43-49.
 
[14]  Andallu, B.; Vinay Kumar, A.V. and Varadacharyulu, N. (2009). Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. CV Suguna leaves. Int J Diabetes Dev Ctries. 29(3): 123-128
 
[15]  Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview Food Res. Inter.44 (7):1830-1836.
 
[16]  Zhang, Y.J.; Tanaka, T.; Iwamoto, Y.; Yang, C.R. and Kouno, I. (2000). Novel norsesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod. 63, 1507-1510.
 
[17]  Hassan, S. M.; El-Kholie, E. M. and Khedr, A. M. (2018). Anti-obesity Effect of Gooseberry (Physalis peruviana) Fruits in-Induced Obese Rats. J. of Studi. and Sear. of Spec. Edu. 4 (2): 155-170.
 
[18]  Sato, R.; Buesa, L.M. and Nerurkar, P.V. (2010). Anti-obesity effects of Emblica officinalis (amla) are associated with inhibition of nuclear transcription factor, peroxisome proliferator-activated receptor gamma (ppar gamma). FASEB J. 24:661-664.
 
[19]  Rao, T.P.; Sakaguchi, N.; Juneja, L. R.; Wada, E.; Yokozawa, T. (2005). Amla (Emblicaofficinalisgaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats. J. Med. Food 8:362-368.
 
[20]  De, A.; De, A.; Papasian, C.; Hentges, S.; Banerjee, S.; Haque, I. and Banerjee, S.K.(2013). Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS ONE 8: e72748.
 
[21]  Jose, J.K. and Kuttan, R. (2000). Hepatoprotective activity of Emblica officinalis and chyavanaprash. J. Ethnopharmacol.72: 135-140.
 
[22]  Cosmulescu, S. and Trandafir, I. (2012). Anti-Oxidant Activities and Total Phenolics Contents of Leaf Extracts from 14 Cultivars of Walnut (Juglansregia L.). J. Hort. Sci. and Biotechnol. 87:504-508.
 
[23]  Cosmulescu, S.; Trandafir, I.; Nour, V. and Botu, M. (2015). Total Phenolic, Flavonoid Distribution and Antioxidant Capacity in Skin, Pulp and Fruit Extracts of Plum Cultivars. J. of Food Bioche. 39(1): 64-69.
 
[24]  Thaipong, K.; Boonprakoba, U.; Crosby, K.; Cisneros, L. and Byrnec, D.H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimatingantioxidant activity from guava fruit extracts. J. Food Com. Anal. 19: 669-675.
 
[25]  Goupy, P., Hugues, M.; Boivin, P. and Amiot, M. (1999). Antioxidant composition and activity of barley (Hordeumvulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79:1625-1634
 
[26]  Mattila, P.; Astola, J. and Kumpulainen, J. (2000). Determination of Flavonoids in Plant Material by HPLC with Diode-Array and Electro-Array Detections. J. Agric. Food Chem.48: 5834-5841
 
[27]  A.O.A.C (2005). Official Methods of Analysis of Association of Official Analysis Chemists Revision 1, International 18thEd. Washinton, D.C, U.S.A.
 
[28]  Melgarejo, P.; Salazar, D.M. and Artes, F. (2000). Organic acids and sugars composition of harvested pomegranate fruits. Eur Food Res. Technol.211: 185-190.
 
[29]  Zielinski , A. A. F.; Braga , C. M.; Demiate, I. M.; Beltrame, F. L.; Nogueira, A. and Wosiack, G. (2014). Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stage. Food Sci. Technol.Campinas.34(1): 38-43.
 
[30]  Reeves, P.G.; Nielsen, F.H. and Fahey, G.C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951.
 
[31]  Mohammed, A.; Alshawsh, M.; Ameen, A.; Salmah, I. and Zahra, A.(2009).Hepatoprotective effects of or thosiphonstamineus extract on thioacetamide-induced liver cirrhosis in rats. Malaysia Grant 182:1-14.
 
[32]  Kantah, M.K.; Kobayashi, R.; Sollano, J.; Naito, Y.; Solimene, U.; Jains, S.; Catanzaro, R.; Minelli, E.; Polimeni, A. and Marotta, F. (2011). Hepatoprotective activity of a phytotherapeutic formula on thioacetamide-induced liver fibrosis model. Acta Biomed., 82: 82-89.
 
[33]  Wastson, D.A. (1960). Simple method for the determination of serum cholesterol. Clin Chem Acta 5: 589.
 
[34]  Wieland, H. and Seidel, D. (1983).A fully enzymatic colorimetric determination of HDL-cholesterol in the serum. J .Nutr. 109: 760-766.
 
[35]  Fossati, P. and Prencipe, L. (1982). The determination of triglycerdes using enzymatic methods. Clin. Chem. 28: 2077.
 
[36]  Bergmeyer, H.U. and Harder, M. (1986). A colorimetric methods of determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Clin. Biochem. 24: 28-34.
 
[37]  Varley, H.; Gewenlock, A. and Bell, M. (1980). Practical Clinical Biochemistry. Vol.1. 5th edn, pp. 741, 897.London: William Heinemen Medical. Books, Ltd.
 
[38]  Aebi, H. (1983). Catalase. In: Bergmeyer HU (Eds) Methods in Enzymatic Analysis. Academic Press, New York, pp: 276-286.
 
[39]  Ohkawa, H.; Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358.
 
[40]  Doumas, B. T.; , P. P.; , B. W.; , B.;, R. B .;, R. and , L. L. (1985). Candidate reference method for determination of total bilirubin in serum: development and validation. Clin. Chem. 31(11): 1779-1789.
 
[41]  Doumas, B.T.; Watson, W.A. and Biggs, H.G. (1971). Albumin standard and the measurement of serum albumin with bromocresol green. Clin Chim Acta. 31:87-96.
 
[42]  Larsen, K. (1972). Creatinine assay by a reaction-kinetic principle. Clin Chim Acta 41: 209-217.
 
[43]  Orsonneau, J. L.; Massoubre. C.; Cabanes, M. and Lustenberger, P. (1992) Simple and sensitive determination of urea in serum and urine. Clin Chem 38: 619-623.
 
[44]  Yooon, B.I.; Choi, Y.K.; Kim, D.Y.; Hyun, B.H.; Joo, K.H.; Rim, H.J. and Lee, J.H. (2001). Infectivity and pathological changes in murine clonorchiasis: Comparison in immune competent and immune deficient mice. J Vet. Med. Sci. 63: 421-425.
 
[45]  Snedecor, G.W. and Cochran, W.G. (1980).Statistical methods Book, p420, 7th Ed Iowa Stat Univ. Press, Ames, Iowa, USA.
 
[46]  Polumackanycz, M.; Tomasz, S; Elzbieta, G.;Marek,W.and Agnieszka, V (2019). A Comparative Study on the Phenolic Compositionand Biological Activities of Morusalba L. Commercial Samples. Molecules 24:3082
 
[47]  Khan, T.; Ahmad, M.; Khan, R.; Khan, H.;Ejaz, A.and Choudhary,M.I. (2006).Evaluation of phyto medicinal potentials of selected plants of Pakistan.Am. Lab.38(9):20-22.
 
[48]  Imran, M.; Hamayun, K.; Mohibullah, S.; Rasool, K. and Faridullah, K. (2010). Chemical composition and antioxidant activity of certain Morus species. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 11(12): 973-980.
 
[49]  Ramadan, Manal, M.; Ahmed, H;, El-Ghorab, K. and Ghanem, Z. (2015). Volatile compounds, antioxidants, and anticancer activitiesof cape gooseberry fruit (Physalisperuviana L.): an in-vitrostudy. J. of the Arab Soc. for Medi.Rese., 10: 56-64.
 
[50]  Chanyotha,A.; Watchara,,K.; Techametheekul,,P. and Setthayanond, J.(2019).Development and antioxidant activity analysis of bio-cellulose containing Indian gooseberry extract .Inte. J. of Eng. and Adv.Techn. (IJEAT), ISSN: 2249 – 8958, -8, 3S: 516-519
 
[51]  Akina, M.; Sadiye, P. E.; Sezai,E.; Veneta,K.T. and Ecevit,E.(2016). Phytochemical profiles of wild blackberries, black and white mulberries from southern Bulgaria. Biotech. and Biotech. Equi. 30 (5): 899-906.
 
[52]  Katsube, T. (2006). Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem., 1.(97): p.25-31.
 
[53]  Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D, PiotrSzulc, J.P. and Dziedziński,M. (2020). Antioxidant potential of various solvent extract from Morus alba fruits and its majorpolyphenols composition. Food Techn. 50 (1): 1-12.
 
[54]  Sanchez, E.M.; Calin- Sanchez,A.; Carbonell-Barrachina, A. A.; Melgarejo, P.; Hernandez,F. and Martinez-Nicolas, J. J.(2014) Physicos chemical characterization of eight Spainsh mulberry clones: Processing and fresh market aptitudes. Int. J. Food Sci. Technol., 49: 477-483.
 
[55]  Shakya, A. K. (2020). Drug-induced hepatotoxicity and hepatoprotective medicinal plants: A Review. Indi. J. of Pharm.Edu.and Rese. 54(2):234-249
 
[56]  Ahmad A, Pillai, K.K.; Najmi, A.K, Ahmad, S.J.; Pal, S.N. and Balani, D.K. (2002). Evaluation of hepatoprotective potential of Jigrine post‑treatment against thioacetamide induced hepatic damage. J Ethno.79: 35-41.
 
[57]  Akhtar, T. and Sheikh, N. (2013).An Overview of Thioacetamide-Induced Hepatotoxicity. Toxin Rev. 32: 43-46.
 
[58]  Hajovsky, L.; Hu, G.; Koen, Y.; Sarma, D.; Cui,W.; Moore, D.S.; Staudinger, J.L. and Hanzlik, R.P.(2012). Metabolism and Toxicity of Thioacetamide and Thioacetamide S-Oxide in Rat Hepatocytes. Chem. Res. Toxicol. 25:1955-1963.
 
[59]  Jantararussamee, Ch.;Rodniem, S.; Taweechotipatr, M.; Showpittapornchai, U. and Pradidarcheep, W. (2020). Hepatoprotective Effect of probiotic Lactic acid bacteria on thioacetamide-induced liver fibrosis in rats. Probiotics and Antimicrobial Proteins. 143: 1-11.
 
[60]  Aftab Ahmed, A.; Al-Abbasi, F, A.; Sadath, S.; Ali, S.; Abuzinadah, M. F.; Alhadrami, H. A.; Alghamdi, A.; Ali H. Aseeri, A. H.; Khan, Sh. A. and Husain, A. (2018). Ameliorative Effect of Camel’s Milk and Nigella Sativa Oil against thioacetamide-induced hepatorenal damage in rats. Pharma.Maga. 14 (53): 27-35.
 
[61]  Kaplowitz, N., (2002). Biochemical and cellular mechanisms of toxic liver injury. Seminars in Liver Disease 22:137-144.
 
[62]  Leena, P. and Alaraman, B.R.(2005). Effect of green tea extract on cisplatin induced oxidative damage on kidney and testes of rats. Ars. Pharm., 46: 5-18.
 
[63]  Begum,Q.;Noori, Sh. And Tabassum Mahboob, T. (2011). Antioxidant effect of sodium selenite on thioacetamide-induced renal toxicity. Pak. J. Biochem. Mol. Biol. 44(1): 21-26.
 
[64]  Chen, P.J.; Chiu, C.H.; Tseng, J.K.; Yang, K.T. and Chen, Y.C.(2015). Ameliorative effects of D-glucuronolactone on oxidative stress and inflammatory/fibrogenic responses in livers of thioacetamide-treated rats. J Funct. Foods,14: 154-162.
 
[65]  Hussein, S.; Elhadary, A. and Elgzar, Y. (2014). Biochemical study on the protective effect of curcumin on thioacetamide induced hepatotoxicity in rats. BVMJ 27: 175-185.
 
[66]  Mousa, A. A.; El-Gansh, H. A.; Abd Eldaim, M. A.; Mohamed, M. A.; Morsi, A. H.; HeshamSaad El Sabagh, H. (2019). Protective effect of Moringao leifera leaves ethanolic extract against thioacetamide-induced hepatotoxicity in rats via modulation of cellular antioxidant, apoptotic and inflammatory markers Envir. Sci. and Pollu. Rese. 26: 32488-32504.
 
[67]  Khawar,M.B.; and Abbasi, M.H. (2016). Punjab univ. alterations in proteins and transaminases activity induced by thioacetamide in albino rats. J Zool 31: 269-276.
 
[68]  Gangarapu, V.; Gujjala S. and Korivi, S. (2013). Combined effect of curcumin and vitamin E against CCl4 induced liver injury in rats. Am J Life Sci. 1(3): 117-124.
 
[69]  Palanivel, M.G.; Rajkapoor, B. and Kumar, R.S (2008). Hepatoprotective and antioxidant effect of Pisonia aculeate L. against CCl4-induced hepatic damage in rats. Sci Pharm. 76: 203-215.
 
[70]  Punitha, S.C. and Rajasekaran, A. (2011). Antioxidant mediated defense role of Wedelia Calendulacea herbal extract against CCl4 induced toxic hepatitis. J Pharma Sci. 1(9): 111-115.
 
[71]  Kabiri, N.; Ahangar-Darabi, M.; Setorki, M. and Rafieian-kopaei. (2013). The effect of silymarin on liver injury induced by Thioacetamide in rats. J. Herb. Med. Pharmacol. 2(2): 29-33.
 
[72]  Wu, J.W.; Lin, L.C.; Chi, C.W. and Tsai, T.H. (2009). Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J Ethnopharmacol 121: 185-193.
 
[73]  Qin, D.; Nie, Y.; and Wen, Z. (2014). Protection of rats from thioacetamide-induced hepatic fibrosis by the extracts of a traditional Uighur medicine Cichorium glandulosum. Iran J Basic Med Sci.17 (11):879- 885.
 
[74]  Seki, E.; De Minicis, S.; Gwak, G.Y.; Kluwe, J.; Inokuchi, S. and Bursill, C.A. (2009). CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin.Inves. 119: 1858-1870.