American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2013, 1(3), 38-46
DOI: 10.12691/ajfn-1-3-4
Open AccessArticle

Adding Value to Cacao Pod Husks as a Potential Antioxidant-Dietary Fiber Source

Beda M. Yapo1, , V. Besson2, Benoit B. Koubala3 and Kouassi L. Koffi2

1Subunit of Pedagogy in Biochemistry and Microbiology, Unit of Training and Research in Agroforestry, University of Jean Lorougnon Guédé (UJLoG), BP 150 Daloa, Côte d’Ivoire

2Food Research and Technology Division, Cargill West Africa, Abidjan, Côte d’Ivoire

3Department of Life and Earth Sciences, University of Maroua, PO Box 55, Cameroon

Pub. Date: December 24, 2013

Cite this paper:
Beda M. Yapo, V. Besson, Benoit B. Koubala and Kouassi L. Koffi. Adding Value to Cacao Pod Husks as a Potential Antioxidant-Dietary Fiber Source. American Journal of Food and Nutrition. 2013; 1(3):38-46. doi: 10.12691/ajfn-1-3-4


Côte d’Ivoire (Ivory Coast) is the world’s largest cocoa producer with about 1.2-1.6 million tons per year. This co-generates approximately ten times of fresh cacao pod husks, which are hitherto left unutilized to decompose in plantations. This study aims at evaluating the cacao pod husks potential for antioxidant-dietary fiber compounds. Cacao pod husk product was used for the extraction of dietary fiber and phenolic compounds. The results showed that the cacao pod husk product contained ∼ 60.0% of total dietary fiber, of which non-starchy polysaccharides accounted for > 70.0%, and a total phenolic content of ∼69.0 mg Gallic acid equivalent/g, thereby indicating that it was an antioxidant dietary fiber-rich product. It also exhibited interesting antioxidant properties, as judged by 2,2-Diphenyl-1-picrylhydrazyl (85.0% inhibition percentage and EC50 = 25.0 g/g), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (52.0 µmol Trolox equivalent/g), and Ferric reducing antioxidant power (130.0 µmol Trolox equivalent/g) assays. The total antioxidant capacity of the cacao pod husk product was significantly higher (P < 0.05) than the total antioxidant capacity of fermented-and-roasted cocoa hull and kernel products. The total antioxidant capacity seemed to result from synergistic interactions among various compounds endowed with antioxidant capacity, including soluble phenolics, condensed tannins, and possibly pectic substances. Cacao pod husks therefore appeared to be a valuable source of antioxidant dietary fiber-rich food materials which may be used to significantly reduce the risk of development of miscellaneous free radical-induced diseases.

cacao pod husks dietary fiber; hydration properties polyphenols antioxidant activity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma O I, Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Res. 2005; 579:200-213.
[2]  Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013; 51:15-25.
[3]  Ching SYL, Hall J, Croft K, Beilby J, Rossi E, Ghisalberti E. Antioxidant inhibition of oxygen radicals for measurement of total antioxidant capacity in biological samples. Anal. Biochem. 2006; 353:257-265.
[4]  Othman A, Ismail A, Ghani NA, Adenan I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007; 100:1523-1530.
[5]  Zheng, X.-Q., Koyama Y, Nagai C, Ashihara H. Biosynthesis, accumulation and degradation of theobromine in developing Theobroma cacao fruits. J. Plant Physiol. 2004, 161: 363-369.
[6]  Maskarinec G. Cancer protective properties of cocoa: A review of the epidemiologic evidence. Nutr. Cancer. 2009; 61:573-579.
[7]  Yapo BM, Koffi K L. Dietary fiber components in yellow passion fruit rinds—A potential fiber source. J. Agric. Food Chem. 2008; 56(14):5880-5883.
[8]  Martin MA, Goya L, Ramos S. Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem. Toxicol. 2013; 56:336-351.
[9]  Lachenaud P, Paulin D, Ducamp M, Thevenin J.-M. Twenty years of agronomic evaluation of wild cocoa trees (Theobroma cacao L.) from French Guiana. Sci. Hortic. 2007; 113: 313-321.
[10]  Figueira A, Janick J, BeMiller JN. New products from Theobroma cacao: Seed pulp and pod gum. In: Janick J, Simon JE, editors. New crops. New York: Wiley; 1993.
[11]  Raghavendra SN, Swamy SRR, Rastogi NK, Raghavarao KSMS, Kumar S, Tharanathan RN. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. J. Food Eng. 2006; 72:281-286.
[12]  Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956; 28:350-356.
[13]  Cheynier V, Labarbe B, Moutounet M. Estimation of procyanidin chain length. Meth. Enzymol. 2001; 335: 82-94.
[14]  Lee SC, Prosky L, De Vries JW. Determination of total, soluble, and insoluble dietary fiber in foods—Enzymatic-gravimetric method, MES-TRIS buffer: collaborative study. J. AOAC Int. 1992; 75:395-416.
[15]  Van Handel E. Determination of fructose and fructose-yielding carbohydrates with cold anthrone. Anal. Biochem. 1967; 19:193-194.
[16]  Van Handel E. Direct microdetermination of sucrose. Anal. Biochem. 1968; 22:280-283.
[17]  Waffenschmidt S, Jaenicke L. Assay of reducing sugars in the nanomole range with 2,2'-bicinchoninate. Anal. Biochem. 1987; 165:337-340.
[18]  Finch PR, Yuen R, Schachter H, Moscarello MA. Enzymic methods for the micro assay of D-mannose, D-glucose, D-galactose, and L-fucose from acid hydrolyzates of glycoproteins. Anal. Biochem. 1969; 31:296-305.
[19]  Woodward J, Wagner M, Lennon KW, Zanin G, Scott MA. Coupling of glucose oxidase and Fenton's reaction for a simple and inexpensive assay of β-glucosidase. Enzym. Microb. Technol. 1985; 7:449-453.
[20]  Pham PJ, Hernandez R, French WT, Estill BG, Mondala AH. A spectrophotometric method for quantitative determination of xylose in fermentation medium. Biomass Bioenerg. 2011; 35:2814-2821.
[21]  Yapo BM. Improvement of the compositional quality of monocot pectin extracts contaminated with glucuronic acid-containing components using a step-wise purification procedure. Food Bioprod. Process. 2010; 88(2-3): 283-290.
[22]  Yapo BM, Koffi KL. The polysaccharide composition of yellow passion fruit rind cell wall: chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. J. Sci. Food Agric. 2008; 88(12):2125-2133.
[23]  Yapo BM, Koffi KL. Yellow passion fruit rind—A potential source of low-methoxyl pectin. J. Agric. Food Chem. 2006; 54(7):2738-2744.
[24]  Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999; 299:152-178.
[25]  Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. u.-Technol. 1995; 28:25-30.
[26]  Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999; 26:1231-1237.
[27]  Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The FRAP assay. Anal. Biochem. 1996; 239:70-76.
[28]  Wollgast J, Anklam E. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000; 33:423-447.
[29]  Redgwell RJ, Trovato V, Curti D. Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem. 2003; 80:511-516.
[30]  Lecumberri E, Mateos R, Izquierdo-Pulido M, Rupérez P, Goya L, Bravo L. Dietary fiber composition, antioxidant capacity and physico-chemical properties of a fiber-rich product from cocoa (Theobroma cacao L.). Food Chem. 2007; 104:948-954.
[31]  Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A. Dietary fiber in cocoa shell: characterisation of component polysaccharides. Food Chem. 2003; 81:103-112.
[32]  Grigelmo-Miguel N, Martín-Belloso O. Characterization of dietary fiber from orange juice extraction. Food Res. Int. 1999; 31:355-361.
[33]  Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amadó R, Thibault JF. Hydration properties of dietary fibre and resistant starch: a European collaborative study. Lebensm.-Wiss. u.-Technol. 2000; 33: 72-79.
[34]  Happi-Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 2007; 103:59-600.
[35]  Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008; 41:274-285.
[36]  Cheynier V, Souquet J-M, Le Roux E, Guyot S, Rigaud J. Size separation of condensed tannins by normal-phase high-performance liquid chromatography. Meth. Enzymol. 1999; 299:178-184.
[37]  Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Rad. Biol. Med. 1993; 14:303-311.
[38]  Aruoma O. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutation Res. 2003; 523-524:9-20.
[39]  Gan C-Y, Latiff AA. Extraction of antioxidant pectic polysaccharide from mangosteen (Garcinia mangostana) rind: Optimization using response surface methodology. Carbohydr. Polym. 2011; 83:600-607.