American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2019, 7(3), 72-77
DOI: 10.12691/ajfn-7-3-1
Open AccessArticle

Control of Blood Glucose in Type 2 Diabetes by Modification of Conventional Diet Composition

Md. Taslim Hossain1, Md. Nazibur Rahman2 and Md. Mukter Hossain3,

1Youth Training Center, Department of Youth Development, Ministry of Youth and Sports, Bangladesh

2Department of Biochemistry and Molecularbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh

3Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh

Pub. Date: August 01, 2019

Cite this paper:
Md. Taslim Hossain, Md. Nazibur Rahman and Md. Mukter Hossain. Control of Blood Glucose in Type 2 Diabetes by Modification of Conventional Diet Composition. American Journal of Food and Nutrition. 2019; 7(3):72-77. doi: 10.12691/ajfn-7-3-1


In this study, 100 clinically diagnosed types 2 diabetic patients were selected for investigation. The objective of this study was to control of blood glucose level in type 2 diabetic patient by the modification of conventional diet composition. The patients were studied using a randomized 5 week crossover design with the conventional and modified conventional diet (test diet) respectively. The mean body weight, BMI, waist circumference and waist to hip ratio were 60.1 ± 2.21 kg, 24.1 ± 2.71 kg/meter², 36.2 ± 0.762 inch and 0.904 ± 0.029 respectively with the conventional diet, that decreased to 59.5 ± 2.20 kg (P<0.01), 23.9 ± 2.73 kg/ meter² (P<0.05), 33.7 ± 0.512 inch (P<0.05) and 0.897 ± 0.026 (P<0.05) respectively after intervention of the test diet. The mean systolic and diastolic blood pressure were 124 ± 11.4 and 82 ± 6.9 mmHg respectively and after 5 weeks of intervention of test diet both the blood pressure decreased significantly (P<0.05) to 112 ± 8.6 and 69± 6.9 mmHg respectively. The mean fasting and postprandial blood sugar were 10.4 ± 0.38 and 12 ± 0.53 mmol/l with the conventional diet whereas it decreased significantly (P <0.001) to 8.1 ± 0.75 and 9.8 ± 0.40 mmol/l respectively. Before starting the test diet, the mean HbA1C was 6.4 ± 0.13 % but 5 week of post feeding the HbA1C decreased to 5.8 ± 0.19 % ( P<0.001). The mean ALT value was 47.5 ± 8.95 u/l and decreased significantly (P < 0.05) to 24.5 ± 4.19 u/l. During conventional diet, the mean AST and ALP level were 55.8 ± 25.18 and 93 ± 6.06 u/l respectively, after intervention it decreased to 42.8 ± 27.43 and 75 ± 10.85 u/l but not significantly (P = 0.759, P= 0.337).

blood glucose conventional diet modification diet type 2 diabetes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Baruah, M.P., Kalra, S., Unnikrishnan, A.G., Raza, S.A., Somasundaram, N., John, M., Katulanda, P., Shrestha, D., Bantwal, G., Sahay, R., Latt, T.S. and Pathan, F.: Management of hyperglycemia in geriatric patients with diabetes mellitus: South Asian consensus guidelines. Indian Journal of Endocrinology and Metabolism. 15: 75-90. 2011.
[2]  Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E. and Makaroff, L.E.: IDF diabetes atlas: global esti¬mates for the prevalence of diabetes for 2015 and 2040. Dia¬betes Research and Clinical Practice. 128: 40-50. 2017.
[3]  Klein, R., Knudtson, M.D., Lee, K.E., Gangnon, R. and Klein, B.E.: The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty five year progression of retinopathy in persons with type 1 diabetes. Ophthalmology. 115: 1859-1868. 2008.
[4]  Fong, D.S., Aiello, L.P., Ferris, F.L. and Klein, R.: Diabetic retinopathy. Diabetes Care. 27: 2540-2553. 2004.
[5]  Gross, J.L., de Azevedo, M.J., Silveiro, S.P., Canani, L.H., Caramori, M.L. and Zelmanovitz, T.: Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 28: 164-176. 2005.
[6]  Adler, A.I., Stevens, R.J., Manley, S.E., Bilous, R.W., Cull, C.A. and Holman, R.R.: Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney International. 63: 225-232. 2003.
[7]  Almdal, T., Scharling, H., Jensen, J.S. and Vestergaard, H.: The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Archives of Internal Medecine. 164: 1422-1426. 2004.
[8]  Avogaro, A., Giorda, C., Maggini, M., Mannucci, E., Raschetti, R., Lombardo, F., Spila-Alegiani, S., Turco, S., Velussi, M. and Ferrannini, E.: Incidence of coronary heart disease in type 2 diabetic men and women: impact of microvascular complications, treatment, and geographic location. Diabetes Care. 30: 1241-1247. 2007.
[9]  Li, D., Yeung, S.C., Hassan, M.M., Konopleva, M. and Abbruzzese, J.L.: Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 137: 482-488. 2009.
[10]  Gannon, M.C., Hoover, H. and Nuttall FQ.: Further decrease in glycated hemoglobin following ingestion of a LoBAG30 diet for 10 weeks compared to 5 weeks in people with untreated type 2 diabetes. Nutrition and Metabolism (Lond). 7: 64. 2010.
[11]  Gannon, M.C. and Nuttall, F.Q.: Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes. 53: 2375-2382. 2004.
[12]  Garg, A., Bantle, J.P., Henry, R.R., Coulston, A.M., Griver, K.A., Raatz, S.K., Brinkley, L., Chen, Y.D., Grundy, S.M. and Huet, B.A.: Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus. The Journal of the American Medical Association. 271: 1421-1428. 1994.
[13]  McFarlane, S.I., Shin, J.J., Rundek, T. and Bigger, J.T. Prevention of type 2 diabetes. Current Diabetes Reports. 3: 235-241. 2003.
[14]  Magos, L.: Modification of Evelyn and Malloy's method for the determination of methemoglobin. Industrial Medicine and Surgery. 29: 593. 1960.
[15]  Gannon, M.C., Nuttall, F.Q., Saeed, A., Jordan, K. and Hoover, H.: An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. The American Journal of Clinical Nutrition. 78: 734-741. 2003.
[16]  Nuttall, F.Q., Schweim, K., Hoover, H. and Gannon, M.C.: Effect of the LoBAG30 diet on blood glucose control in people with type 2 diabetes. British Journal of Nutrition. 99: 511-519. 2008.
[17]  Haimoto, H., Sasakabe, T., Wakai, K. and Umegaki, H.: Effects of a low-carbohydrate diet on glycemic control in outpatients with severe type 2 diabetes. Nutrition and Metabolism (Lond). 6: 21. 2009.
[18]  Sheard, N.F., Clark, N.G., Brand-Miller, J.C., Franz, M.J., Pi-Sunyer, F.X., Mayer-Davis, E., Kulkarni, K. and Geil, P.: Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the American diabetes association. Diabetes Care. 27: 2266-2271. 2004.
[19]  Samaha, F.F., Iqbal, N., Seshadri, P., Chicano, K.L., Daily, D.A., McGrory, J., Williams, T., Williams, M., Gracely, E.J. and Stern, L. A low-carbohydrate as compared with a low-fat diet in severe obesity. New England Journal of Medicine. 348: 2074-2081. 2003.
[20]  Accurso, A., Bernstein, R.K., Dahlqvist, A., Draznin, B., Feinman, R.D., Fine, E.J. and Gleed, A.: Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutrition and Metabolism (Lond). 5: 9. 2008.
[21]  Feinman, R.D. and Fine, E.J.: Thermodynamics and Metabolic Advantage of Weight Loss Diets. Metab Synd Relat Disord 1: 209-219. 2003.
[22]  Krieger, J.W., Sitren, H.S., Daniels, M.J. and Langkamp-Henken, B.: Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression. American Journal of Clinical Nutrition. 83: 260-274. 2006.
[23]  Volek, J.S. and Feinman, R.D.: Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction. Nutrition and Metabolism (Lond). 2: 31. 2005.
[24]  Westman, E.C., Feinman, R.D., Mavropoulos, J.C., Vernon, M.C., Volek, J.S., Wortman, J.A., Yancy, W.S. and Phinney, S.D.: Low-carbohydrate nutrition and metabolism. American Journal of Clinical Nutrition. 86: 276-284. 2007.
[25]  Arora, S.K. and McFarlane, S.I.: The case for low carbohydrate diets in diabetes management. Nutrition and Metabolism (Lond). 2: 16. 2005.
[26]  Boden, G., Sargrad, K., Homko, C. and Mozzoli, M.: Effect of a Low -Carbohydrate Diet on Appetite, Blood Glucose Levels, and Insulin Resistance in Obese Patients with Type 2 Diabetes. Annals of Internal Medicine. 142: 403-411. 2005.
[27]  Huang, K.C., Lin, W.Y., Lee, L.T., Chen, C.Y., Lo, H., Hsia, H.H., Liu, I.L., Shau, W.Y. and Lin, R.S.: Four anthropometric indices and cardiovascular risk factors in Taiwan. International Journal of Obesity and Related disorders. 26: 1060-1068. 2002.
[28]  Dalton, M., Cameron, A.J., Zimmet, P.Z., Shaw, J.E., Jolley, D., Dunstan, D.W. and Welborn, T.A.: Waist circumference, waist-hip ratio and body mass index and their correlation with cardiovascular disease risk factors in Australian adults. Journal of Internal Medicine. 254: 555-563. 2003.
[29]  Tulloch-Reid, M.K., Hanson, R.L., William, D.E., Knowler, W.C. and Looker, H.C.: Do measures of body fat distribution provide information on the risk of type 2 diabetes in addition to measures of general obesity? Comparison of anthropometric predictors of type 2 diabetes in Pima Indians. Diabetes Care. 26: 2556-2561. 2003.
[30]  Okosun, I.S., Cooper, R.S., Rotini, C.N., Osotimehin, B. and Forrester, T.: Association of Waist Circumference with Risk of Hypertension and Type 2 Diabetes in Nigerians, Jamaicans, and African-Americans. Diabetes Care. 21: 1836-1842. 1998.
[31]  Tiikkainen, M., Bergholm, R., Vehkavaara, S., Rissanen, A., Hakkinen, A.M., Tamminen, M., Teramo, K. and Yki-Jarvinen, H.: Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 52: 701-707. 2003.
[32]  McFarlane, S.I., Banerji, M. and Sowers, J.R.: Insulin resistance and cardiovascular disease. The Journal of Clinical Endocrinology and Metabolism. 86: 713-718. 2001.
[33]  Dermot, N.: Liver enzymes, fatty liver and type 2 diabetes. Annals of Clinical Biochemistry. 42: 167-169. 2005.
[34]  Sato, K.K., Hayashi, T., Yoshiko, N., Harita, N., Yoneda, T., Endo, G. and Kambe, H.: Liver Enzymes Compared With Alcohol Consumption in Predicting the Risk of Type 2 Diabetes. Diabetes Care. 31: 1230-1236. 2008.
[35]  Nannipieri, M., Gonzales, C., Baldi, S., Posadas, R., Williams, K., Haffner, S.M., Stern, M.P. and Ferrannini, E.: Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City Diabetes Study. Diabetes Care. 28: 1757-1762. 2005.
[36]  Sattar, N., Scherbakova, O., Ford, I., O'Reilly, D.S., Stanley, A., Forrest, E., Macfarlane, P.W., Packard, C.J., Cobbe, S.M. and Shepherd, J.: Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland Coronary Prevention Study. Diabetes. 53: 2855-2860. 2004.
[37]  Vozarova, B., Stefan, N., Lindsay, R.S., Saremi, A., Pratley, R.E., Bogardus, C. and Tataranni, P.A.: High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 51: 1889-1895. 2002.
[38]  Cho, N.H., Jang, H.C., Choi, S.H., Kim, H.R., Lee, H.K., Chan, J.C.N. and Lim, S.: Abnormal Liver Function Test Predicts Type 2 Diabetes. Diabetes Care. 30: 2566-2568. 2007.