American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
American Journal of Food and Nutrition. 2019, 7(1), 26-35
DOI: 10.12691/ajfn-7-1-5
Open AccessReview Article

The Synbiotic Role of Mushrooms: is Germanium a Bioactive Prebiotic Player? A Review Article

Ferrão J1, Bell V2, Chaquisse E3, Garrine C4 and Fernandes T1, 4,

1The Vice-Chancellor’s Office, Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo, Moçambique

2Faculty of Pharmacy, Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal

3Instituto Nacional de Saúde, MISAU, Av. 24 Julho, Maputo, Mozambique

4Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal

Pub. Date: February 25, 2019

Cite this paper:
Ferrão J, Bell V, Chaquisse E, Garrine C and Fernandes T. The Synbiotic Role of Mushrooms: is Germanium a Bioactive Prebiotic Player? A Review Article. American Journal of Food and Nutrition. 2019; 7(1):26-35. doi: 10.12691/ajfn-7-1-5


Background: Mushrooms have been widely used as medicinal products. In developed countries, only in the past few decades, special attention has been given to dietary supplements as sources to improve health and wellness. Aim of the study: This review critically assessed the mode of action of mushrooms, their extracts and biomass, following our research on mode of action, efficacy and safety of mushroom nutrition. Results: The nutritional role of mushroom products, as indirect probiotics, as direct prebiotics or as both (synbiotics), is justified by their influence on the inflammation process and on the gut microbioma through their contents of β-glucans, enzymes, and secondary metabolites. A possible new concept is advanced, that ultra-trace elements (e.g. germanium) may play an eventual prebiotic complementary role on the mode of action of mushrooms. Conclusion: The special properties of mushrooms along with their minimal side effects make them ideal candidates for developing novel dietary supplements and therapies.

mushroom microbiota gut health metalloid bioactive compounds

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Badalyan SM. Potential of mushroom bioactive molecules to develop healthcare biotech products. Proc 8th Int Conf Mushroom Biol Mushroom Prod 2014: 373-8.
[2]  Valverde ME, Hernández-Perez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2013; 2015: 1-14.
[3]  Wasser S. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J 2014; 37: 345.
[4]  Gibson GR, Probert HM, Loo J Van, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17: 259.
[5]  Caporgno MP, Mathys A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front Nutr 2018; 5: 1-10.
[6]  Patel S, Goyal A. The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2012; 2: 115-25.
[7]  Singdevsachan SK, Auroshree P, Mishra J, Baliyarsingh B, Tayung K, Thatoi H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact Carbohydrates Diet Fibre 2016; 7: 1-14.
[8]  Rahar S, Swami G, Nagpal N, Nagpal M, Singh G. Preparation, characterization, and biological properties of β-glucans. J Adv Pharm Technol Res 2011; 2: 94.
[9]  Ortiz LT, Rodríguez ML, Alzueta C, Rebolé A, Treviño J. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. Br Poult Sci 2009; 50: 325-32.
[10]  Zhang TY, Liu JL, Zhang J, Zhang N, Yang X, Qu H, et al. Effects of Dietary Zinc Levels on the Growth Performance, Organ Zinc Content, and Zinc Retention in Broiler Chickens. Brazilian J Poult Sci 2018; 20: 127-32.
[11]  Alonso J, García MA, Pérez-López M, Melgar MJ. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 2003; 44: 180-8.
[12]  Davis HC. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Ir J Med Sci 2018; 187: 393-402.
[13]  Fesel PH, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 2016; 90: 53-60.
[14]  Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol 2012; 16: 285-9.
[15]  El Khoury D, Cuda C, Luhovyy BL, Anderson GH. Beta glucan: Health benefits in obesity and metabolic syndrome. J Nutr Metab 2012; 2012.
[16]  Ren L, Perera C, Hemar Y. Antitumor activity of mushroom polysaccharides: a review. Food Funct 2012; 3: 1118.
[17]  Synytsya A, Míčková K, Synytsya A, Jablonský I, Spěváček J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym 2009; 76: 548-56.
[18]  Kim SP, Kang MY, Kim JH, Nam SH, Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J Agric Food Chem 2011; 59: 9861-9.
[19]  Vaz JA, Heleno SA, Martins A, Almeida GM, Vasconcelos MH, Ferreira ICFR. Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem Toxicol 2010; 48: 2881-4.
[20]  Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E. Effects of beta-glucans on the immune system. Medicina (Kaunas) 2007; 43: 597-606.
[21]  Chang ST, Buswell JA. Mushroom nutriceuticals. World J Microbiol Biotechnol 1996; 12: 473-6.
[22]  Tomita M, Miwa M, Ouchi S, Oda T, Aketagawa J, Goto Y, et al. Nonlinear intestinal absorption of (1-->3)-beta-D-glucan caused by absorptive and secretory transporting system. Biol Pharm Bull 2009; 32: 1295-7.
[23]  Georgia Department of Public Health. Contribution of inflammation to several diseases. Stat Georg 2017. March 23, 2018).
[24]  Grigg JB, Sonnenberg GF. Host-Microbiota Interactions Shape Local and Systemic Inflammatory Diseases. J Immunol 2017; 198: 564-71.
[25]  Senghor B, Sokhna C, Ruimy R, Lagier J-C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum Microbiome J 2018; 7-8: 1-9.
[26]  Thorburn AN, Macia L, Mackay CR. Diet, Metabolites, and “Western-Lifestyle” Inflammatory Diseases. Immunity 2014; 40: 833-42.
[27]  Silva V de O, Pereira LJ, Murata RM. Oral microbe-host interactions: influence of β-glucans on gene expression of inflammatory cytokines and metabolome profile. BMC Microbiol 2017; 17: 53.
[28]  North CJ, Venter CS, Jerling JC. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur J Clin Nutr 2009; 63: 921-33.
[29]  Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-18.
[30]  Scully C, Georgakopoulou EA, Hassona Y. The Immune System: Basis of so much Health and Disease: 3. Adaptive Immunity. Dent Update 2017; 44: 322-4, 327.
[31]  Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab 2016; 5: 317-20.
[32]  Soty M, Penhoat A, Amigo-Correig M, Vinera J, Sardella A, Vullin-Bouilloux F, et al. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health. Mol Metab 2015; 4: 106-17.
[33]  Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81.
[34]  Trovato A, Pennisi M, Crupi R, Paola R Di, Alario A, Modafferi S, et al. Neuroinflammation and Mitochondrial Dysfunction in the Pathogenesis of Alzheimer’s Disease: Modulation by Coriolus Versicolor (Yun-Zhi) Nutritional Mushroom. J Neurol Neuromed 2017; 2: 19-28.
[35]  Annison EF, Bryden WL. Perspectives on ruminant nutrition and metabolism I. Metabolism in the Rumen. Nutr Res Rev 1998; 11: 173-98.
[36]  David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-63.
[37]  Ohira H, Tsutsui W, Fujioka Y. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis? J Atheroscler Thromb 2017; 24: 660-72.
[38]  Hur KY, Lee MS. Gut Microbiota and Metabolic Disorders. Diabetes Metab J 2015; 39: 198-203.
[39]  den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54: 2325-40.
[40]  Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016; 7: 185.
[41]  Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR. Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Sci Rep 2018; 8: 16655.
[42]  Defois C, Ratel J, Garrait G, Denis S, Le Goff O, Talvas J, et al. Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep 2018; 8: 11006.
[43]  Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, et al. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem 2018; 74: 69-83.
[44]  Jiang H, Zhang X, Yu Z, Zhang Z, Deng M, Zhao J, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res 2018; 104: 130-6.
[45]  Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, et al. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res 2017; 77: 1783-812.
[46]  O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7: 688-93.
[47]  Shenhav L, Furman O, Mizrahi I, Halperin E. Modeling the temporal dynamics of the gut microbial community in adults and infants. BioRxiv 2017: 212993.
[48]  Sung J, Kim S, Cabatbat JJT, Jang S, Jin Y-S, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 2017; 8: 15393.
[49]  de Jesus Raposo MF, de Morais AMMB, de Morais RMSC. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar Drugs 2016; 14.
[50]  Yamaguchi M, Yang Y, Ando M, Kumrungsee T, Kato N, Okazaki Y. Increased intestinal ethanol following consumption of fructooligosaccharides in rats. Biomed Reports 2018; 9: 427-32.
[51]  Hozová B, Kuniak Ľ, Kelemenová B. Application of beta-D-glucans isolated from mushrooms Pleurotus ostreatus (Pleuran) and Lentinus edodes (Lentinan) for increasing the bioactivity of yoghurts. Czech J Food Sci 2011; 22: 204-14.
[52]  Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. Evidence-Based Complement Altern Med 2018; 2018: 1-9.
[53]  Wang Y. Prebiotics: Present and future in food science and technology. Food Res Int 2009; 42: 8-12.
[54]  Ng TB. A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (basidiomycetes: polyporaceae). Gen Pharmacol 1998; 30: 1-4.
[55]  Saleh MH, Rashedi I, Keating A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front Immunol 2017; 8: 1087.
[56]  Chatterjee S, Biswas G, Basu SK, Acharya K. Antineoplastic effect of mushrooms: A review. Aust J Crop Sci 2011; 5: 904-11.
[57]  Barros AB, Ferrão J, Fernandes T. A safety assessment of Coriolus versicolor biomass as a food supplement. Food & Nutrition Res 2016; 60: 1-7.
[58]  Javanmard A, Ashtari S, Sabet B, Davoodi SH, Rostami-Nejad M, Esmaeil Akbari M, et al. Probiotics and their role in gastrointestinal cancers prevention and treatment; an overview. Gastroenterol Hepatol from Bed to Bench 2018; 11: 284-95.
[59]  Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 2001; 73: 399s-405s.
[60]  Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature 2001; 413: 36-7.
[61]  Larone DH. Medically important fungi. 4th ed. USA: 2002.
[62]  Pandey KR, Naik SR, Vakil B V. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 2015; 52: 7577-87.
[63]  Barclay D V., Schrezenmeir J, Scholz-Ahrens KE, Adolphi B, Açil Y, Rochat F, et al. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats — impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. NFS J 2016; 3: 41-50.
[64]  Jayachandran M, Chen J, Chung SSM, Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J Nutr Biochem 2018; 61: 101-10.
[65]  Khan AA, Gani A, Khanday FA, Masoodi FA. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. Bioact Carbohydrates Diet Fibre 2018; 16: 1-13.
[66]  Ercolini D, Fogliano V. Food Design To Feed the Human Gut Microbiota. J Agric Food Chem 2018; 66: 3754-8.
[67]  Shanahan F, van Sinderen D, O’Toole PW, Stanton C. Feeding the microbiota: transducer of nutrient signals for the host. Gut 2017; 66: 1709-17.
[68]  Nabhani Z, Hezaveh SJG, Razmpoosh E, Asghari-Jafarabadi M, Gargari BP. The effects of synbiotic supplementation on insulin resistance/sensitivity, lipid profile and total antioxidant capacity in women with gestational diabetes mellitus: A randomized double blind placebo controlled clinical trial. Diabetes Res Clin Pract 2018; 138: 149-57.
[69]  Deshpande GC, Rao SC, Keil AD, Patole SK. Evidence-based guidelines for use of probiotics in preterm neonates. BMC Med 2011; 9: 92.
[70]  Nicholson LB. The immune system. Essays Biochem 2016; 60: 275-301.
[71]  Vetvicka V, Dvorak B, Vetvickova J, Richter J, Krizan J, Sima P, et al. Orally administered marine (1 → 3)-β-d-glucan Phycarine stimulates both humoral and cellular immunity. Int J Biol Macromol 2007; 40: 291-8.
[72]  Novak M, Vetvicka V. β -Glucans, History, and the Present: Immunomodulatory Aspects and Mechanisms of Action. J Immunotoxicol 2008; 5: 47-57.
[73]  Tang J, Lin G, Langdon WY, Tao L, Zhang J. Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front Immunol 2018; 9: 123.
[74]  Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, et al. C-Type Lectin Receptor CD23 Is Required for Host Defense against Candida albicans and Aspergillus fumigatus Infection. J Immunol 2018; 201: 2427-40.
[75]  Bohn JA, BeMiller JN. (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 1995; 28: 3-14.
[76]  Albeituni SH, Yan J. The effects of β-glucans on dendritic cells and implications for cancer therapy. Anticancer Agents Med Chem 2013; 13: 689-98.
[77]  Chan G, Chan W, Sze D. The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2009; 2: 25.
[78]  Ruthes AC, Smiderle FR, Iacomini M. D-Glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches. Carbohydr Polym 2015; 117: 753-61.
[79]  So J-S. Roles of Endoplasmic Reticulum Stress in Immune Responses. Mol Cells 2018; 41: 705-16.
[80]  Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci Hum Wellness 2013; 2: 162-6.
[81]  Naimi S, Zirah S, Hammami R, Fernandez B, Rebuffat S, Fliss I. Fate and Biological Activity of the Antimicrobial Lasso Peptide Microcin J25 Under Gastrointestinal Tract Conditions. Front Microbiol 2018; 9: 1764.
[82]  Lenfestey MW, Neu J. Gastrointestinal Development: Implications for Management of Preterm and Term Infants. Gastroenterol Clin North Am 2018; 47: 773-91.
[83]  Chamidah A. Stability of prebiotic, laminaran oligosaccharide under food processing conditions. IOP Conf Ser Earth Environ Sci 2018; 137: 012069.
[84]  Jeong S-Y, Kang S, Hua CS, Ting Z, Park S. Synbiotic effects of β-glucans from cauliflower mushroom and Lactobacillus fermentum on metabolic changes and gut microbiome in estrogen-deficient rats. Genes Nutr 2017; 12: 31.
[85]  Falandysz J. Selenium in Edible Mushrooms. J Environ Sci Heal Part C 2008; 26: 256-99.
[86]  Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, et al. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res 2012; 19: 416-31.
[87]  Kitadai N, Maruyama S. Origins of building blocks of life: A review. Geosci Front 2018; 9: 1117-53.
[88]  Roberts SJ, Szabla R, Todd ZR, Stairs S, Bučar D-K, Šponer J, et al. Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nat Commun 2018; 9: 4073.
[89]  Jamnická G, Vál’ka J, Bublinec E. Heavy metal accumulation and distribution in forest understory herb species of Carpathian beech ecosystems. Chem Speciat Bioavailab 2013; 25: 209-15.
[90]  Falandysz J, Mędyk M, Treu R. Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ Sci Pollut Res Int 2018; 25: 25190-206.
[91]  Falandysz J, Sapkota A, Dryżałowska A, Mędyk M, Feng X. Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom Macrolepiota procera. Environ Sci Pollut Res Int 2017; 24: 15528-37.
[92]  Bienert GP, Schüssler MD, Jahn TP, Jahn T. Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 2008; 33: 20-6.
[93]  Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging 2007; 11: 99-110.
[94]  Nielsen FH. Update on the possible nutritional importance of silicon. J Trace Elem Med Biol 2014; 28: 379-82.
[95]  Pérez-Granados AM, Vaquero MP. Silicon, aluminium, arsenic and lithium: essentiality and human health implications. J Nutr Health Aging 2002; 6: 154-62.
[96]  Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 1997; 179: 3365-7.
[97]  McNaughton SA, Bolton-Smith C, Mishra GD, Jugdaohsingh R, Powell JJ. Dietary silicon intake in post-menopausal women. Br J Nutr 2005; 94: 813.
[98]  Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, et al. A silicon transporter in rice. Nature 2006; 440: 688-91.
[99]  Kinrade SD, Balec RJ, Schach AS, Wang J, Knight CTG. The structure of aqueous pentaoxo silicon complexes with cis-1,2-dihydroxycyclopentane and furanoidic vicinal cis-diols. Dalt Trans 2004: 3241.
[100]  Pruksa S, Siripinyanond A, Powell JJ, Jugdaohsingh R. Silicon balance in human volunteers; a pilot study to establish the variance in silicon excretion versus intake. Nutr Metab (Lond) 2014; 11: 4.
[101]  Jugdaohsingh R, Sripanyakorn S, Powell JJ. Silicon absorption and excretion is independent of age and sex in adults. Br J Nutr 2013; 110: 1024-30.
[102]  Goodman S. Therapeutic effects of organic germanium. Med Hypotheses 1988; 26: 207-15.
[103]  Jung M, Jung BG, Cha S Bin, Shin MK, Lee WJ, Shin SW, et al. The effects of Germanium biotite supplement as a prophylactic agent against respiratory infection in calves. Pak Vet J 2012; 32: 319-24.
[104]  Choline-stabilised orthosilicic acid added for nutritional purposes to food supplements. EFSA J 2009; 7: 948.
[105]  Araújo LA de, Addor F, Campos PMBGM. Use of silicon for skin and hair care: an approach of chemical forms available and efficacy. An Bras Dermatol 2016; 91: 331-5.
[106]  Dobrzyński D, Boguszewska-Czubara A, Sugimori K. Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Environ Geochem Health 2018; 40: 1355-75.
[107]  Kondratska OA, Grushka NG, Kaplunenko VG, Pavlovych SI, Sribna VO, Yanchii RI. Protective effect of germanium citrate in endotoxin-induced ovarian dysfunction in mice. Medicni Perspekt (Medical Perspect 2018; 23: 71-7.
[108]  Ulbricht CE. Natural Standard Herb & Supplement Guide. 1st ed. Missouri, USA: Mosby. Elsevier; 2010.
[109]  Sithole SC, Mugivhisa LL, Amoo SO, Olowoyo JO. Pattern and concentrations of trace metals in mushrooms harvested from trace metal-polluted soils in Pretoria, South Africa. South African J Bot 2017; 108: 315-20.
[110]  Borovička J, Kubrová J, Rohovec J, Řanda Z, Dunn CE. Uranium, thorium and rare earth elements in macrofungi: What are the genuine concentrations? BioMetals 2011; 24: 837-45.
[111]  Levine SA. Organic Germanium A Novel Dramatic Immunostimulant. J Orthomol Med 1987; 2: 83-7.
[112]  Asai K. Miracle Cure: Organic Germanium. Japan Publications; 1980.
[113]  Schroeder HA. Serum Cholesterol Levels in Rats Fed Thirteen Trace Elements. J Nutr 1968; 94: 475-80.
[114]  International Organization for Standardization. INTERNATIONAL STANDARD and metalloids in airborne particulate. Geneva: 2012.
[115]  Furst A. Biological Testing of Germanium. Toxicol Ind Health 1987; 3: 167-204.
[116]  Chenghom O, Suksringar J, Morakot N. Mineral Composition and Germanium Contents in Some Phellinus Mushrooms in the Northeast of Thailand. Curr Res Chem 2010; 2: 24-34.
[117]  Dhingra HM, Umsawasdi T, Chiuten DF, Murphy WK, Holoye PY, Spitzer G, et al. Phase II study of spirogermanium in advanced (extensive) non-small cell lung cancer. Cancer Treat Rep 1986; 70: 673-4.
[118]  Bhatti FUR, Kim SJ, Yi A-K, Hasty KA, Cho H. Cytoprotective role of vitamin E in porcine adipose-tissue-derived mesenchymal stem cells against hydrogen-peroxide-induced oxidative stress. Cell Tissue Res 2018; 374: 111-20.
[119]  Li L, Ruan T, Lyu Y, Wu B. Advances in Effect of Germanium or Germanium Compounds on Animals—A Review. J Biosci Med 2017; 05: 56-73.
[120]  Nakamura T, Takeda T, Tokuji Y. The Oral Intake of Organic Germanium, Ge-132, Elevates α-Tocopherol Levels in the Plas-ma and Modulates Hepatic Gene Expression Profiles to Promote Immune Activation in Mice. Int J Vitam Nutr Res 2014; 84: 0183-95.
[121]  Schroeder HA, Kanisawa M, Frost D V., Mitchener M. Germanium, Tin and Arsenic in Rats: Effects on growth, survival, pathological lesions and life span. J Nutr 1968; 96: 37-45.
[122]  Cheong YH, Kim SU, Seo DC, Chang NI, Lee JB, Park JH, et al. Effect of Inorganic and Organic Germanium Treatments on the Growth of Lettuce (Lactuca sativa). J Korean Soc Appl Biol Chem 2009; 52: 389-96.
[123]  Qu L, Li S, Zhuo Y, Chen J, Qin X, Guo G. Anticancer effect of triterpenes from Ganoderma�lucidum�in human prostate cancer cells. Oncol Lett 2017; 14: 7467-72.
[124]  Nakamura T, Nagura T, Akiba M, Sato K, Tokuji Y, Ohnishi M, et al. Promotive Effects of the Dietary Organic Germanium Poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) on the Secretion and Antioxidative Activity of Bile in Rodents. J Heal Sci 2010; 56: 72-80.
[125]  NAKAMURA T, NAGURA T, SATO K, OHNISHI M. Evaluation of the Effects of Dietary Organic Germanium, Ge-132, and Raffinose Supplementation on Caecal Flora in Rats. Biosci Microbiota, Food Heal 2012; 31: 37-45.
[126]  Krystek P, Ritsema R. Analytical product study of germanium-containing medicine by different ICP-MS applications. J Trace Elem Med Biol 2004; 18: 9-16.
[127]  Sliva D. Medicinal mushroom Phellinus linteus as an alternative cancer therapy. Exp Ther Med 2010; 1: 407-11.
[128]  Lai W-F, Lin M, Tang G, Lai W-F, Lin MC, Tang G. A Phytochemical-Based Copolymer Derived from Coriolus versicolor Polysaccharopeptides for Gene Delivery. Molecules 2018; 23: 2273.
[129]  Nakamura T, Saito M, Aso H. Effects of a lactobacilli, oligosaccharide and organic germanium intake on the immune responses of mice. Biosci Biotechnol Biochem 2012; 76: 375-7.
[130]  Schauss AG. Nephrotoxicity in humans by the ultratrace element germanium. Ren Fail 1991; 13: 1-4.
[131]  Krapf R, Schaffner T, Iten PX. Abuse of Germanium Associated with Fatal Lactic Acidosis. Nephron 1992; 62: 351-6.
[132]  Raisin J, Hess B, Blatter M, Zimmermann A, Descoeudres C, Horber FF, et al. [Toxicity of an organic Germanium compound: deleterious consequences of a " natural remedy" ]. Schweiz Med Wochenschr 1992; 122: 11-3.
[133]  Tao S-H, Bolger PM. Hazard Assessment of Germanium Supplements. Regul Toxicol Pharmacol 1997; 25: 211-9.
[134]  Sabbioni E, Fortaner S, Bosisio S, Farina M, Del Torchio R, Edel J, et al. Metabolic fate of ultratrace levels of GeCl 4 in the rat and in vitro studies on its basal cytotoxicity and carcinogenic potential in Balb/3T3 and HaCaT cell lines. J Appl Toxicol 2010; 30: 34-41.