American Journal of Energy Research
ISSN (Print): 2328-7349 ISSN (Online): 2328-7330 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Energy Research. 2018, 6(1), 23-29
DOI: 10.12691/ajer-6-1-4
Open AccessArticle

Impact of the Geometry Profil of the Bandgap of the CIGS Absorber Layer on the Electrical Performance of the Thin-film Photocell

Ousmane Diagne1, , Djimba Niane1, Alain Kassine Ehemba1, Mouhamadou Mamour Soce1 and Moustapha Dieng1

1Laboratory of Semiconductors and Solar Energy, Physics Department, Sciences and Technologies Faculty, Cheikh Anta Diop University, Dakar, Sénégal

Pub. Date: July 19, 2018

Cite this paper:
Ousmane Diagne, Djimba Niane, Alain Kassine Ehemba, Mouhamadou Mamour Soce and Moustapha Dieng. Impact of the Geometry Profil of the Bandgap of the CIGS Absorber Layer on the Electrical Performance of the Thin-film Photocell. American Journal of Energy Research. 2018; 6(1):23-29. doi: 10.12691/ajer-6-1-4


We carried out, through the SCAPS-1D simulator, the survey of the curves of spectral response and J/V characteristic for different parabolic bandgap profile CIGS solar cells. The variable parameter for these different samples is the gallium rate of the CIGS absorber layer. The theoretical model coincides with the one-dimensional model of a heterojunction consisting of a window layer (ZnS), a buffer layer (CdS) and an absorbing layer (Cu(In,Ga)Se₂). The analysis of the results obtained allowed us to identify and evaluate the adjustments that would have to be made, compared to the gallium composition, in order to have an optimal efficiency. Thus, after various adjustments, we obtain a powerful cell that displays a conversion efficiency of around 23.68%. This cell is characterized by a bowing factor (b) equal to 10% and Ga local composition rates equal to 25% and 35% respectively at the junction and the back contact.

CIGS solar cells grading bandgap [Ga/(In+Ga)] ratio electrical parameters SCAPS-1D

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  CIGS solar cells: 22.6% conversion efficiency at ZSW, [online] “L’écho du solaire”. [Online]. Available:[Accessed Feb. 12, 2018].
[2]  R. Herberholz, M. Igalson, and H. W. Schock, “Distinction of bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy” Journal of Applied Physics, 83 (01), pp. 318, 1998.
[3]  M. Burgelman, P. Nollet and S. Degrave. “Modelling Polycrystalline semiconductor solar cells” Thin Solid Films, 361-362, pp. 527-532, 2000.
[4]  M. Burgelman, J. Marlein, “Analysis of graded band gap solar cells with SCAPS”, Proceedings of the 23rd European Photovoltaic Solar Energy Conference, 1-5 September 2008, Valencia, Spain, pp. 2151-2155.
[5]  A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se 2 solar cells grown on flexible polymer films”, Nature materials, 10 (11): 857-861, 2011.
[6]  Marianna Kemell, Mikko Ritala, and Markku Leskelä. “Thin Film Deposition Methods for CuInSe2 Solar Cells”, Critical Reviews in Solid State and Materials Sciences, 30 (1): 1-31, 2005.
[7]  M. Turcu, I. M. Kotschau, and U. Rau. “Composition dependence of defect energies and band alignments in the Cu(In,Ga)(Se,S)2 alloy system” Journal of Applied Physics, 91 (3): 1391, 2002.
[8]  T. Nakada, Invited Paper: “CIGS-based thin film solar cells and modules: Unique material properties”, Electronic Materials Letters, 8 (2): 179-185, 2012.